182.703 Distributed Algorithms (Verteilte Algorithmen)

SS 2024

[v2.24, Feb 26, 2024]

Prof. Ulrich Schmid

http://ti.tuwien.ac.at/ecs/teaching/courses/valg

Technische Universität Wien
Institut für Computer Engineering
Embedded Computing Systems Group (E191-02)
A View of Distributed Computing
Lamport’s definition of a distributed system:

“You know you have one when the crash of a computer you’ve never heard of stops you from getting any work done.”
Facts (II)

Spatially distributed computing systems are ubiquitous nowadays:

- The Internet
- PCs connected via a LAN
- Networked embedded systems
- Shared-memory multiprocessor machines
- Systems-on-Chip

Increasing dependence of our society on correct operation of such systems

Reasoning about distributed systems is important
Characteristics of DS

- Multiple processes, on multiple processors, characterized by
 - asynchronous concurrent computations
 - local state
 - work on common goal \Rightarrow need to access (part of) global state

- Processes can only communicate with each other, via
 - message passing
 - shared memory

- Processes may fail without immediate recognition by the rest of the system
Distributed Systems Dilemma

In theory, distributed systems offer
- increased reliability/availability
- increased performance
- scalability
Distributed Systems Dilemma

In theory, distributed systems offer:
- increased reliability/availability
- increased performance
- scalability

In practice, building up distributed systems is notoriously difficult:
- Heterogeneity of HW & SW
- Lacking adherence to standards
- System size and complexity
- Fundamental problems!
Fundamental Problems

Building distributed systems is difficult due to the processes’ uncertainty about the global system state, as caused by

- different/unknown processor speeds
- varying/unknown communication delays
- partial failures
- local interaction with the environment
Fundamental Problems

Building distributed systems is difficult due to the processes’ uncertainty about the global system state, as caused by
- different/unknown processor speeds
- varying/unknown communication delays
- partial failures
- local interaction with the environment

Need distributed algorithms for pivotal services like leader election, mutual exclusion and consensus that
- can live with this uncertainty
- can be proved to work correctly
Course Overview
Paradigm (I)

Attack distributed algorithms from a theoretical perspective:

- Identify and abstract fundamental problems
- State problems carefully
- State system model and failure model carefully
- Design algorithms to solve those problems
- Prove correctness of those algorithms under the system and failure model
- Analyze time/space/message complexity
- Prove impossibility results and lower bounds
Paradigm (II)

Granted: Theoretical reasoning cannot replace (but only complement) engineering:
- Theory often deals with high-level specifications, rather than fully implemented algorithms
- Real-world requirements often difficult/impossible to model

But:
- Careful specifications clarify intent
- Mathematical proofs increase confidence in correctness of implemented algorithms
- Good abstractions can be re-used in multiple contexts
- Inherent limitations are revealed
Course Content (I)

What you will NOT hear about:

- CSP, CCS and other logic-based and algebraic specifications
- Formal verification
- Complex distributed algorithms
- Distributed programming

Some of those topics are covered by other basic courses, like

- Formale Methoden der Informatik
- Computer-Aided Verification
Course Content (II)

What you will hear about:

- Communicating state machines
- Computational models
- Failure models
- Correctness proofs and performance analysis of simple distributed algorithms
- Impossibility results and lower bound proofs
Some Background Info

- Actual course content defined by my slides
 http://ti.tuwien.ac.at/ecs/teaching/courses/valg/misc/valg.pdf
 - Slides essentially text-only
 - Lectures primarily use blackboard drawings
 - **Recommended**: Print slides and add info during lectures
- Prerequisites: Analysis of algorithms and basic discrete mathematics — will be checked in first quiz!
What to Do?

- **4(5) Homework assignments (45%)**, to be carefully, rigorously and completely worked out by yourself (using \LaTeX)
 - first version, also presented on blackboard in class
 - doubly-blind review of your colleagues’ first versions
 - final version, incorporating the feedback
- **5 Quizzes (40%)**, 25–30 min. each, covering both advance reading and past material (including prerequisites) of current chapter
- **Final exam (15%)**, 50-60 min., a quiz covering the whole content of the course
- Participation in discussions in class
Course Admission

Participation in VALG requires passing admission criteria. Why?

- Students with insufficient skills in devising basic mathematical proofs almost always drop out or fail to pass the course, typically wasting much time and effort
- Giving detailed feedback on homework requires small class size

Admission criteria:

- Performance in the first and second quiz: You need to be positive in at least one of those
- Master students [VALG mandatory usually prefered]
- Bachelor students also eligible if class size allows
General Rules

- Passing requires $\geq 60\%$ of the achievable maximum
- Presence in class is mandatory
- Advance reading of textbook required — will be checked in quizzes!
- Graduate courses like VALG adhere to “pull-based” learning — you have to obtain all the information you need for doing your work
- All work must be done on your own and written up in your own words; all sources of information must be properly referenced (except textbook and slides)
- Enroll via myTI only after you satisfy the admission criteria
Expected Achievements

Having passed this course, you should

- have improved formal/mathematical skills in general (major rationale of most Master TI basic courses)
- have seen another example of “computer science ⊆ programming”
- have a first basis for own work in this area

Regarding this course . . .

- Some success stories of former VALG participants: http://ti.tuwien.ac.at/ecs/teaching/courses/valg/misc/success_st
- Against rumors about “too much effort”: http://ti.tuwien.ac.at/ecs/teaching/courses/valg/misc/Benchmark_VALG.pdf
Follow-up Courses (I)

Problems in Distributed Computing 182.703
- Overview lectures of advanced topics in distributed algorithms
- Joint reading of papers or book chapters
- Student’s lectures

Scientific Project Computer Engineering 182.759
- First steps in own scientific work in a (self-)assigned distributed algorithms project
- Guided writing of a small scientific paper + presentation
- Learning about the scientific community in the field
Follow-up Courses (II)

Master thesis, Dissertation

- Typically funded positions (Forschungsbeihilfe, Master-level research contract, PhD research contract)
- Learn about top-level international research
- Try out your (first) own steps in real scientific research

http://ti.tuwien.ac.at/ecs/teaching/courses/valg/misc/success_st
Questions ?
Formal Model (Message Passing)
Network Model

Communications graph, made up of

- n processors p_0, \ldots, p_{n-1}
- processors communicate by sending messages $m \in M$
- up to $n(n-1)/2$ bidirectional point-to-point links

Restrictions in this course:

- Reliable links
- Usually fully-connected network
State Machines Modeling Processors (I)

Processor p_i modeled as state machine $P_i = (Q_i, \Phi_i, I_i, T_i)$

- state set Q_i (possibly infinite)
- non-empty set of initial states $I_i \subseteq Q_i$
- non-empty set of terminal states $T_i \subseteq Q_i$ (closed under transition relation)
- transition relation $\Phi_i \subseteq Q_i \times Q_i$ (successor relation; often a function)
State Machines Modeling Processors (I)

Processor p_i modeled as state machine $P_i = (Q_i, \Phi_i, I_i, T_i)$

- state set Q_i (possibly infinite)
- non-empty set of initial states $I_i \subseteq Q_i$
- non-empty set of terminal states $T_i \subseteq Q_i$ (closed under transition relation)
- transition relation $\Phi_i \subseteq Q_i \times Q_i$ (successor relation; often a function)

Transition $(q_i, q'_i) \in \Phi_i$, also termed step, denoted (q_i, ϕ_i, q'_i),

- happens upon occurrence of event ϕ_i (we will use $\phi_i = i$, denoting “p_i makes a step”)
- when in state q_i (enabling condition), step moves p_i to state q'_i
State transitions executed

- atomically (at once, i.e., non-interruptable)
- in zero time, but:
- model non-zero execution times via time between successive steps
State Machines Modeling Processors (II)

State transitions executed

- atomically (at once, i.e., non-interruptable)
- in zero time, but:
- model non-zero execution times via time between successive steps

Depending on transition relation:

- **Deterministic** state machines (this course): If \((q_i, \phi, q'_i)\) and \((q_i, \phi, q''_i)\) are valid state-transitions, then \(q'_i = q''_i\) (⇒ event and step essentially equivalent)

- Non-deterministic [randomized] state machines:
 Multiple \(q'_i\) [according to some probability distribution]
Our Processor States

State Q_i partitioned into $Q_i = L_i \times inbuf_i[\ast] \times outbuf_i[\ast]$

- “Ordinary” internal state L_i (local memory, registers)
- Received messages: $inbuf_i[\ast] = \bigcup_{\ell=0, \ell \neq i}^{n-1} inbuf_i[\ell]$
- Messages in transit: $outbuf_i[\ast] = \bigcup_{\ell=0, \ell \neq i}^{n-1} outbuf_i[\ell]$
- Transition enabling only depends on accessible state $S_i = L_i \cup inbuf_i[\ast]$, i.e., p_i “knows” only S_i

Transition (q_i, ϕ, q_i') at p_i involves

- removing messages from $inbuf_i[\ast]$ and/or
- changing local state and/or
- putting messages into $outbuf_i[\ast]$
Build global state machine $S = (C, \Phi, \mathcal{I}, \mathcal{T})$, by composing all p_i’s state machines

- Global states: Configurations $C, \mathcal{I}, \mathcal{T}$
- Global transitions: $\Phi \subseteq C \times C$

Configurations $C = (q_0, q_1, \ldots, q_{n-1}) \in Q_0 \times \cdots \times Q_{n-1}$
- vector of all p_i’s local states [including $inbuf_i[\ast]$ and $outbuf_i[\ast]$]
- only known to omniscient observer
- initial and terminal configurations composed from I_i and T_i, respectively
Distributed State Machine (II)

Message delivery relation $\Delta \subseteq C \times C$

- move a non-empty subset of messages in $outbuf_\ast[\ast]$ to $inbuf_\ast[\ast]$
- message delivery usually non-deterministic
Distributed State Machine (II)

Message delivery relation $\Delta \subseteq C \times C$

- move a non-empty subset of messages in $outbuf_\ast[\ast]$ to $inbuf_\ast[\ast]$
- message delivery usually non-deterministic

Transition $(q, q') \in \Phi = \Delta \cup \bigcup_{i=0}^{n-1} \Phi_i$ of global state machine:

- Φ is union of all p_i’s transition relations Φ_i and message delivery relation Δ
- global state transition = either local state transition of one processor or delivery of messages
Distributed Algorithm vs. Adversary

View execution of global state machine S as interplay between algorithm and adversary

- algorithm (via Φ_i) determines what to do in a step
- adversary determines
 - message scheduling: order and times of deliveries
 - processor scheduling: order and times of events
 - failures: type and times of failures

Power of adversary constrained by

- system model (synchronous, asynchronous)
- fairness conditions (message & processor sched.)
- failure model
Transition Function of Textbook (I)

Only two simple types of events:

- **Deliver event** $\phi_j = \text{del}(i, j, m)$ at p_j: For some single message $m \in \text{outbuf}_i[j]$, move m from $\text{outbuf}_i[j]$ to $\text{inbuf}_j[i]$

- **Computation event** $\phi_i = \text{comp}(i)$ at p_i: Move processor p_i from q_i to q_i' [with $\text{inbuf}_i[*] = \emptyset$], and add zero or more messages $m \in M_\ell$ to $\text{outbuf}_i[\ell]$, for every ℓ

Note:

- Any $\text{comp}(i)$ must always be **applicable**, i.e., there must always be an enabled transition at any p_i
- Message delivery need not be FIFO
- Can also model hardware broadcast communication
Executions (I)

Execution segment $C^0, \phi^1, C^1, \ldots, \phi^m, C^m$ of system S:

- Finite sequence of configurations alternating with events, ending in a configuration

- Event ϕ^k is either:

 - $\phi^k = \text{comp}(i)$, identifying the processor p_i that performs the step (C^{k-1}, ϕ^k, C^k), or

 - $\phi^k = \text{del}(j, i, m)$, identifying the delivery of message m at processor p_i

- at most processor p_i (and $\text{outbuf}_j[i]$ of p_j, in case of a delivery event) change state when S moves from C^{k-1} to C^k
Executions (II)

Executions are infinite execution segments C^0, ϕ^1, C^1, \ldots

- starting with an initial configuration

 $C^0 = (q^0_0, \ldots, q^0_{n-1}) \in I = I_1 \times \cdots \times I_n$

- typically reaching (and remaining within) terminal configuration, i.e., $\exists 0 \leq K \leq \infty$ such that, for all $k \geq K$

 $C^k = (q^k_0, \ldots, q^k_{n-1}) \in T = T_1 \times \cdots \times T_n$, where in C^k

 - $inbuf^i[_*] = \emptyset$, i.e., no unprocessed messages
 - $outbuf^i[_*] = \emptyset$, i.e., no in-transit messages exist.

- a configuration C occurring in some valid execution is called reachable configuration
Executions (III)

For an execution segment $C^0, \phi^1, C^1, \ldots, \phi^m, C^m$, the schedule $\sigma = \phi^1 \phi^2 \ldots \phi^m$ is

- the totally ordered sequence of events
- successive events possibly occur at the same time

Given some event ϕ applicable in configuration C, we write $C' = \phi(C)$ if (C, ϕ, C') is a valid step.

Deterministic processors: Schedule σ + initial config. C^0 uniquely determine $\text{exec}(C^0, \sigma) = C^0, \phi^1, C^1, \ldots$, via $C^k = \phi^k(C^{k-1})$ for $k \geq 1$

For $\phi^k = \text{comp}(i)$, this holds only since $\text{inbuf}_i[\ast]' = \emptyset$ [otherwise, we would not know which message(s) from multiple ones are actually processed in the step]
Summary of implications of $\text{inbuf}_i[\ast] = \emptyset$ after $\text{comp}(i)$:

- Is key for 1:1 correspondence of executions and schedules,
- despite local computation events consisting of processor id only
- dropping it would require incorporating the processed message(s) in an event [e.g., FLP model]

- Processing order of messages may sometimes differ from delivery order (determined by algorithm in case of multiple delivered messages)

- Makes definition of end-to-end message delay independent of “receptiveness” [i.e. readiness for processing a message] of algorithm
Multiple Processes on a Processor

In this course, we will primarily focus on a single process (= thread of control) per processor.

In practice, multiple processes can be executed concurrently (multi-tasking or even multi-core) on a single processor.

We sometimes allow multiple processes per processor, to:
- execute multiple distributed algorithms in the system concurrently
- facilitate modular algorithms and proofs (simulations)

BUT: Requires extensions of our formal distributed computing model.
Layered Process Model

Every processor (node) $p_i \in \{p_0, \ldots, p_{n-1}\}$ executes $k \geq 2$ processes $p_{i,1}, \ldots, p_{i,k}$ arranged in a stack.

- Layer-j process $p_{i,j}$ communicates with $p_{i,j-1}$ (its top process) and $p_{i,j+1}$ (its bottom process).
- Top process of $p_{i,1}$ is the environment/user of the DS.
- Bottom process of $p_{i,k}$ is the (inter-processor) communication subsystem.

Local inter-process communication via events (that may carry additional data):

- $p_{i,j}$ input events: Triggered by top resp. bottom process [may occur at any time, i.e., cannot be blocked by $p_{i,j}$]
- $p_{i,j}$ output events: Triggered by $p_{i,j}$ itself.
Implications of multiple processes per processor:

- Replace processor id by tuple \((\text{processor id}, \text{process id})\)

$$\Rightarrow$$ Several events can be applicable on a single processor at any point in time [But: deterministic processes $$\Rightarrow$$ at most one per process]

- Drop \(\text{inbuf}_i[\ast] \), \(\text{outbuf}_i[\ast] \) and deliver events altogether

- Drop assumption \(\text{inbuf}_i[\ast] = \emptyset\)

$$\Rightarrow$$ Simple \(\text{comp}(i)\) events no longer sufficient: Need to also incorporate data from input events (e.g., actually received messages) controlled by the adversary
Basic Model: When are Executions Unique?

Starting from same C^0, there are usually different possible schedules/executions:

- In a given configuration C, transitions of several p_i’s could be enabled
- Multiple events ϕ, ϕ' applicable in C

\Rightarrow successor configuration C' could be either $\phi(C)$ or $\phi'(C)$, depending on which event comes first [depends on scheduling by adversary]
Starting from same C^0, there are usually different possible schedules/executions:

- In a given configuration C, transitions of several p_i’s could be enabled
- Multiple events ϕ, ϕ' applicable in C

\Rightarrow successor configuration C' could be either $\phi(C')$ or $\phi'(C')$, depending on which event comes first [depends on scheduling by adversary]

Question: When can events be reordered in a schedule?
Independence of Events

Theorem 38. Let ϕ_i and ϕ_j be two events at different processors $p_i \neq p_j$ that are both applicable to configuration C. Then,

- ϕ_i is applicable to $\phi_j(C')$
- ϕ_j is applicable to $\phi_i(C')$
- and the events commute $\phi_i(\phi_j(C')) = \phi_j(\phi_i(C'))$
Independence of Events

Theorem 38. Let ϕ_i and ϕ_j be two events at different processors $p_i \neq p_j$ that are both applicable to configuration C. Then,

- ϕ_i is applicable to $\phi_j(C')$
- ϕ_j is applicable to $\phi_i(C')$
- and the events commute $\phi_i(\phi_j(C')) = \phi_j(\phi_i(C'))$

Proof. Case analysis:

- $\phi_i = \text{comp}(i)$ and $\phi_j = \text{comp}(j)$: Affects states of $p_i \neq p_j$ independently \Rightarrow events independent

- $\phi_i = \text{comp}(i)$ and $\phi_j = \text{del}(x, j, m)$: Since ϕ_j applicable in C, either $x \neq i$ or $m' \neq m$ for m' sent in ϕ_i \Rightarrow events independent

- $\phi_i = \text{del}(x, i, m)$ and $\phi_j = \text{del}(y, j, m')$ for any x, y: Affects $\text{inbuf}_i[x]$ and $\text{inbuf}_j[y]$ (and $\text{outbuf}_x[i]$ and $\text{outbuf}_y[j]$) only \Rightarrow events independent
Internal Causality

Events ϕ, ϕ' only dependent, that is, $\phi(\phi'(C)) \neq \phi'(\phi(C))$, if either

- they occur at the same processor p_i and
 - $\phi = \text{comp}(i)$ and $\phi' = \text{del}(j, i, m)$, since $\text{comp}(i)$ must process m in $\phi(\phi'(C))$ but cannot in $\phi'(\phi(C))$
 - $[\phi = \text{comp}(i) \text{ and } \phi' = \text{comp}(i) \text{ (due to our simple events, they are the same, hence commute . . .)}]

- the step corresponding to $\phi = \text{comp}(i)$ puts m into $\text{outbuf}_i[j]$ and $\phi' = \text{del}(i, j, m)$
Internal Causality

Events ϕ, ϕ' only dependent, that is, $\phi(\phi'(C)) \neq \phi'(\phi(C))$, if either

- they occur at the same processor p_i and
- $\phi = \text{comp}(i)$ and $\phi' = \text{del}(j, i, m)$, since $\text{comp}(i)$ must process m in $\phi(\phi'(C))$ but cannot in $\phi'(\phi(C))$
- $[\phi = \text{comp}(i)$ and $\phi' = \text{comp}(i)$ (due to our simple events, they are the same, hence commute . . .)]

- the step corresponding to $\phi = \text{comp}(i)$ puts m into $\text{outbuf}_i[j]$ and $\phi' = \text{del}(i, j, m)$

This induces the system’s internal causality relation (Lamport’s happened before relation)

- Depicted via an execution’s space-time diagram
- Dealt with in detail in Chapter “Causality and Time”
System Models
Asynchronous Systems

Consider distributed systems with

1. unbounded (or unknown) but finite transmission delays
2. no real-time clocks
3. no execution speed bounds [but fair processor scheduling]
Asynchronous Systems

Consider distributed systems with

1. unbounded (or unknown) but finite transmission delays
2. no real-time clocks
3. no execution speed bounds [but fair processor scheduling]

Features:

+ Strongest adversary, covering also unanticipated processor workloads, network congestion, etc.
+ Simple semantics (“time-free algorithms”), easy to port
 - Difficult to analyze and prove correct
 - **Impossibilities**: Not all distributed computing problems have asynchronous solutions
Admissible Asynchronous Executions

Executions that also satisfy admissibility conditions:
- Every (correct) processor takes infinitely many steps
- Every message in transit is eventually delivered

Admissibility usually ensured by fairness conditions:
- Restricts adversary w.r.t. processor and message scheduling
- **Weak fairness**: Every continuously applicable event eventually occurs (\Rightarrow infinitely many steps of every p_i)
- [Strong fairness: Every infinitely often applicable event eventually occurs (only relevant for non-deterministic processors, multiple processes etc.)]
Constrain execution of S to **lock-step rounds**:

- Execution proceeds in a sequence of **rounds** $k \geq 1$
- All processors take computing steps simultaneously
Synchronous Systems (I)

Constrain execution of S to lock-step rounds:
- Execution proceeds in a sequence of rounds $k \geq 1$
- All processors take computing steps simultaneously

In every round $k \geq 1$:
1. At the beginning, every p_i simultaneously sends its round-k message(s) to (a subset of) the processors
2. All round-k messages in transit are delivered
3. At the end, every p_i simultaneously performs a single $\text{comp}(i)$ [and sends the messages for round $k + 1$]

Initially: $\text{outbuf}_i[*]$ hold p_i’s round-1 messages
Synchronous Executions

Execution segment $C^0, \phi^1, C^1, \phi^2, C^2, \ldots, \phi^m, C^m$

- Finite sequence of configurations alternating with round events, ending in a configuration

- Round event ϕ^k represents all round k deliver $+ \text{comp}(0), \ldots, \text{comp}(n-1)$ at all processors

- $C^0 \in \mathcal{I}$ is initial configuration, with $\text{outbuf}_i[\ast]$ holding p_i's round-1 messages [often assume “virtual” round 0 ending in C^0 for convenience]

- $C^k, 0(1) \leq k \leq m$, is configuration at the end of round k
Synchronous Executions

Execution segment $C^0, \phi^1, C^1, \phi^2, C^2, \ldots, \phi^m, C^m$

- Finite sequence of configurations alternating with round events, ending in a configuration
- Round event ϕ^k represents all round k deliver + comp(0), \ldots, comp(n − 1) at all processors
- $C^0 \in \mathcal{I}$ is initial configuration, with $outbuf_i[*]$ holding p_i’s round-1 messages [often assume “virtual” round 0 ending in C^0 for convenience]
- $C^k, 0(1) \leq k \leq m$, is configuration at the end of round k

Admissible synchronous executions:

- Infinite execution $C^0, \phi^1, C^1, \phi^2, C^2, \ldots$

\Rightarrow Every p_i takes infinitely many rounds (hence steps)
Synchronous Systems (II)

Lock-step round model

- very convenient for analysis
- too far away from reality to be useful in practice?
Synchronous Systems (II)

Lock-step round model

- very convenient for analysis
- too far away from reality to be useful in practice?

No: Lockstep rounds can be simulated in synchronous systems:

1. Known upper bound δ on message transmission delays
2. Availability of real-time clock C_i with bounded drift ρ' at every processor p_i:

\[(t_1 - t_0)(1 - \rho') \leq C_i(t_1) - C_i(t_0) \leq (t_1 - t_0)(1 + \rho')\]

3. Known lower and upper bound on execution times (time between successive steps)
Synchronous systems allow clocks C_i (and hence inverse clocks $c_i = C_i^{-1}$) to be kept approximately synchronized:

1. $|c_p(T) - c_q(T)| \leq \pi$
2. $(T_1 - T_0)(1 - \rho) \leq c_p(T_1) - c_p(T_0) \leq (T_1 - T_0)(1 + \rho)$
How to Simulate Lockstep Rounds? (I)

Synchronous systems allow clocks C_i (and hence inverse clocks $c_i = C_i^{-1}$) to be kept approximately synchronized:

1. $|c_p(T) - c_q(T)| \leq \pi$
2. $(T_1 - T_0)(1 - \rho) \leq c_p(T_1) - c_p(T_0) \leq (T_1 - T_0)(1 + \rho)$

Use local clocks to almost simultaneously start round k at every processor:

- Start round-k at p_i when local clock C_i reads kR
- Choose $R \geq (\pi + \delta)/(1 - \rho)$
How to Simulate Lockstep Rounds? (II)

Claim: Every round-k message is received before the first processor starts round $k + 1$:

\[t^k_1 \leq \pi \leq \delta \leq t^{k+1}_1 \]
How to Simulate Lockstep Rounds? (III)

Proof:

- Let \(p \) be processor that is the first to start round \(k + 1 \), and \(q \) be the last to start round \(k \).
- Need to show \(t_{p}^{k+1} \geq t_{q}^{k} + \delta \).
- Follows from adding \(t_{p}^{k} \) on both sides of

 \[
 t_{p}^{k+1} - t_{p}^{k} \geq R(1 - \rho) \geq \pi + \delta \geq t_{q}^{k} - t_{p}^{k} + \delta
 \]

⇒ In synchronous model, this provides
- lockstep rounds w.r.t. clock time
- approximately lockstep rounds w.r.t. real-time
Analysis of Distributed Algorithms
Safety and Liveness Properties

Safety properties: “Nothing bad happened yet”

- Violation shows up in a finite prefix of an execution
- Example mutual exclusion: Violated if, in any reachable configuration, two processes are in the critical section
- Proofs typically use induction
Safety and Liveness Properties

Safety properties: “Nothing bad happened yet”

- Violation shows up in a finite prefix of an execution
- Example mutual exclusion: Violated if, in any reachable configuration, two processes are in the critical section
- Proofs typically use induction

Liveness properties: “Something good eventually happens”

- Violation shows up in infinite executions only
- Example leader election: The system eventually elects a leader
- Proofs typically use norm functions on well-founded sets
Assertion-based Safety and Liveness

Focusses on properties fulfilled in reachable configurations of admissible executions of an algorithm

Assertions:

- Unary relation on configurations
- Predicate $P(C)$ that delivers true or false when applied to C

Consider sequence of configurations reached in any execution of S:

- **Safety property:** Assertion that holds in every reachable configuration (\Rightarrow correctness)
- **Liveness property:** Assertion that holds (perpetually) after reaching some configuration (\Rightarrow progress)
Invariants

For assertions A, B, we write $\{A\} \rightarrow \{B\}$ if, for each configuration C and each step (C, ϕ, C'),

- $A(C') \Rightarrow B(C')$, i.e.,
- if A holds before a transition, then B holds afterwards

Assertion A is an invariant if

- $A(C')$ for all $C \in \mathcal{I}$, and
- $\{A\} \rightarrow \{A\}$
Invariants

For assertions A, B, we write $\{A\} \rightarrow \{B\}$ if, for each configuration C and each step (C, ϕ, C'),

- $A(C') \Rightarrow B(C')$, i.e.,
- if A holds before a transition, then B holds afterwards

Assertion A is an invariant if

- $A(C)$ for all $C \in \mathcal{I}$, and
- $\{A\} \rightarrow \{A\}$

Theorem 52. If A is an invariant of system S, then A holds for each configuration of each execution of S. [Proof by simple induction]

Corollary 52. Let B be an invariant of S and assume $B(C') \Rightarrow A(C')$ (for each reachable C'). Then A holds in each configuration of each execution of S.
Well-Founded Partial Orders

Partial order [“strikte (= irreflexive) Halbordnung”]

- Set W
- Partial order $<$ of elements of W:
 - Irreflexivity $w \not< w$
 - Transitivity $(x < y) \land (y < z) \Rightarrow x < z$
 - Asymmetry: $x < y \Rightarrow y \not< x$

A partial order $(W, <)$ is well-founded if

- every non-empty subset $X \subseteq W$ has a minimal element $m \in X$, i.e., $\forall x \in X$ with $x < m$
- Example: Tuples of natural numbers $(n_k, n_{k-1}, \ldots, n_1)$, $k \geq 1$, $n_i \geq 0$, with lexical order
Norm Functions

Equivalent definition of a well-founded partial order \((W, <)\):

- There is no infinite decreasing sequence \(w_1 > w_2 > \cdots\), \(w_i \in W\)

Let a system \(S\) and assertion \(A\) be given. A function \(f : C \to W\) is a norm function if,

- \(f(C) > f(C')\) or \(A(C')\), for each transition \((C, \phi, C')\)
Norm Functions

Equivalent definition of a well-founded partial order \((W, <)\):

- There is no infinite decreasing sequence \(w_1 > w_2 > \cdots\), \(w_i \in W\)

Let a system \(S\) and assertion \(A\) be given. A function \(f : C \rightarrow W\) is a norm function if,

- \(f(C') > f(C')\) or \(A(C')\), for each transition \((C, \phi, C')\)
- \(f(C_i) > f(C_{i+1})\) or \(A(C_{i+1})\), for every \(i \geq 1\), for some infinite sequence of “interesting” configurations \(C_1, C_2, \ldots\) occurring in every execution
- Definition of “interesting” typically depends on \(A\)
Theorem 55. If system S without terminal states ($\mathcal{T} = \emptyset$) has a norm function f, then A is true in some configuration in each execution of S.

Proof. Let E be longest execution prefix where A never holds. The existence of f implies that E is finite, so A must hold in the configuration following E.

\square
Proving Liveness

Theorem 55. If system S without terminal states ($\mathcal{T} = \emptyset$) has a norm function f, then A is true in some configuration in each execution of S.

Proof. Let E be longest execution prefix where A never holds. The existence of f implies that E is finite, so A must hold in the configuration following E.

For systems S with terminal states \mathcal{T},

- define assertion $T(C) = \text{true iff } C \in \mathcal{T}$
- S terminates properly if $T \Rightarrow A$

Theorem 55. If system S terminates properly and a norm function f exists, then A is true in some configuration in each execution of S.

Proof. If some admissible execution of S is finite, A holds by proper termination. In an infinite admissible execution, the previous theorem applies.
König’s Infinity Lemma (I)

Sometimes, one needs to construct an infinite execution with certain properties:

- Proving liveness: absence of a non-terminating infinite execution, existence of a good admissible infinite execution
- Impossibility proofs: existence of a bad admissible infinite execution

Impossible with classic induction:

- Classic induction, proving some assertion \(A(n) \), only covers finite \(n \)
- Example: Can devise induction proof for \(1/n > 0 \) for \(n \geq 1 \), but \(1/\infty = 0 \neq 0 \).
König’s Infinity Lemma (II)

What can we do?
König’s Infinity Lemma (II)

What can we do?

Theorem 57 (König’s Infinity Lemma [Diestel, Lemma 8.1.2]). Let V_0, V_1, \ldots be an infinite sequence of disjoint non-empty finite sets, and let G be a graph on their union. Assume that every vertex v in a set V_n with $n \geq 1$ has a neighbor $f(v)$ in V_{n-1}. Then, G contains an infinite path $v_0v_1\ldots$ with $v_n \in V_n$ for all n.
König’s Infinity Lemma (II)

What can we do?

Theorem 57 (König’s Infinity Lemma [Diestel, Lemma 8.1.2]). Let V_0, V_1, \ldots be an infinite sequence of disjoint non-empty finite sets, and let G be a graph on their union. Assume that every vertex v in a set V_n with $n \geq 1$ has a neighbor $f(v)$ in V_{n-1}. Then, G contains an infinite path $v_0v_1\ldots$ with $v_n \in V_n$ for all n.

Corollary 57. Every locally finite infinite tree [where all nodes have finite (but not necessarily bounded!) degree] contains an infinite path.

König’s-Lemma-based proofs usually construct suitable locally finite configuration trees.
Initial configuration $C^0 +$ schedule $\sigma = \phi^1 \phi^2 \ldots$ defines

- unique execution $\text{exec}(C^0, \sigma) = C^0, \phi^1, C^1, \phi^2, \ldots$
- unique sequence of steps $(C^0, \phi^1, C^1), (C^1, \phi^2, C^2), \ldots$
Initial configuration $C^0 +$ schedule $\sigma = \phi^1 \phi^2 \ldots$ defines

- unique execution $\text{exec}(C^0, \sigma) = C^0, \phi^1, C^1, \phi^2, \ldots$
- unique sequence of steps $(C^0, \phi^1, C^1), (C^1, \phi^2, C^2), \ldots$

Abstract away irrelevant information:

- Augment event ϕ^k by additional data from (C^{k-1}, ϕ^k, C^k)
 \Rightarrow Sequence of augmented events $\phi^1 \phi^2 \ldots$

- Take subsequence (“trace”) of relevant augmented events, or, alternatively, configurations

Problem \mathcal{P} specified by set $\mathcal{E}_\mathcal{P}$ of allowed relevant traces, called a *trace property*
A trace property \mathcal{E} is a safety property if it is

- **non-empty**: $\mathcal{E} \neq \emptyset$ (contains at least empty trace ε)

- **prefix-closed**: Every finite prefix β_i of every trace $\beta \in \mathcal{E}$ is also in \mathcal{E}

- **limit-closed**: For every infinite sequence β_1, β_2, \ldots of finite traces $\beta_i \in \mathcal{E}$, with β_i being a prefix of β_{i+1}, the unique limit $\beta = \lim_{i \to \infty} \beta_i$ is also in \mathcal{E}

→ Example: Local eventual consistency of Algorithm 2
Trace-based Safety and Liveness (II)

A trace property \mathcal{E} is a safety property if it is

- **non-empty**: $\mathcal{E} \neq \emptyset$ (contains at least empty trace ϵ)
- **prefix-closed**: Every finite prefix β_i of every trace $\beta \in \mathcal{E}$ is also in \mathcal{E}
- **limit-closed**: For every infinite sequence β_1, β_2, \ldots of finite traces $\beta_i \in \mathcal{E}$, with β_i being a prefix of β_{i+1}, the unique limit $\beta = \lim_{i \to \infty} \beta_i$ is also in \mathcal{E}

\rightarrow Example: Local eventual consistency of Algorithm 2

A trace property \mathcal{E} is a liveness property if

- Every finite trace has some extension that is in \mathcal{E}

\rightarrow Example: Every p_j eventually sets $parent_j \neq \emptyset$ in Alg 2
To prove that a distributed algorithm A solves problem P:

- Compute the trace property \mathcal{E}_P for P
- Compute the trace property \mathcal{E}_A generated by all admissible executions of a distributed algorithm A
- A is correct for P iff $\mathcal{E}_A \subseteq \mathcal{E}_P$
To prove that a distributed algorithm \(A \) solves problem \(\mathcal{P} \):

- Compute the trace property \(\mathcal{E}_\mathcal{P} \) for \(\mathcal{P} \)
- Compute the trace property \(\mathcal{E}_A \) generated by all admissible executions of a distributed algorithm \(A \)
- \(A \) is correct for \(\mathcal{P} \) iff \(\mathcal{E}_A \subseteq \mathcal{E}_\mathcal{P} \)

Since one can prove that every trace property is the intersection of some safety and some liveness property, i.e., \(\mathcal{E} = \mathcal{E}^S \cap \mathcal{E}^L \), correctness is implied by

- \(\mathcal{E}^S_A \subseteq \mathcal{E}^S_\mathcal{P} \) and
- \(\mathcal{E}^L_A \subseteq \mathcal{E}^L_\mathcal{P} \)
Performance Analysis (I)

Consider terminating algorithms
- every processor reaches terminal configuration
- no messages in transit eventually

Message complexity:
- Maximum number of messages sent in any execution
- Maximum number of bits sent in any execution

Space complexity:
- Maximum number of bits in any processor’s accessible state in any execution
Consider timed executions

- every event associated with occurrence real-time
- timestamps of every p_i’s events ϕ_i^k strictly monotonically increasing (without bound)

End-to-end delay τ of a message m sent by p_i to p_j

- time from $\text{comp}(i)$ sending m to $\text{comp}(j)$ processing m
 [recall that processing happens in first comp after del]
- incorporates both computation and communication

Time complexity:

- Sync: # rounds until last processor in terminal state
- Async: Max. termination time of last processor for $\tau \leq 1$
A Note on Lower Bounds (I)

Mathematical definition $\Omega(.)$

- $f(n) = \Omega(g(n))$ if there are constants C, n_0 such that $|f(n)| \geq C|g(n)|$ for $n \geq n_0$

Application to performance measures of distributed algorithms?
A Note on Lower Bounds (I)

Mathematical definition $\Omega(.)$

- $f(n) = \Omega(g(n))$ if there are constants C, n_0 such that $|f(n)| \geq C|g(n)|$ for $n \geq n_0$

Application to performance measures of distributed algorithms?

Two possibilities for lower bounds on complexities:

- **Worst case:** For algorithm \mathcal{A}, there is some execution E where \mathcal{A} has complexity $C^{wc}(\mathcal{A}) = \Omega(f(n, \ldots))$

- **Best case:** For algorithm \mathcal{A}, the complexity $C^{bc}(\mathcal{A})$ of \mathcal{A} for any execution E is $\Omega(f(n, \ldots))$
A Note on Lower Bounds (II)

We will focus on the worst case lower bound for problem P:

- **Lower bound**: $\inf_{A \text{ solves } P} C^{wc}(A) = \Omega(f(n, \ldots))$

- **Tightness**: $\exists A \text{ that solves } P \text{ with } C^{wc}(A) = O(f(n, \ldots))$
Basic Broadcasting Algorithms
Broadcast on a Spanning Tree

Consider distinguished processor p_r that

- has some message M it wants to broadcast
- is root of a given spanning tree T (i.e., every p_i knows its parent and children)

Simple algorithm

- p_r sends M to all its children in T and terminates (initial = terminal state)
- every p_i that receives M for the first time from its parent sends M to all its children in T
- processors terminate after having sent M
Pseudo-Code Algorithm 1 (Asynchronous)

1. Code for p_r:
 2. Initially M is in transit from p_r to all its children
 3. terminate

4. Code for p_i, $0 \leq i \leq n - 1$, $i \neq r$:
 5. on receiving M from parent:
 6. send M to all children
 7. terminate
State Machine Description Algorithm 1 (I)

Variables $\in L_i$ of processor p_i:
- $parent_i$ holds processor index (or nil in case of p_r)
- $children_i$ holds set of processor indices
- $term_i$ indicates whether p_i has terminated

Initial state:
- $\forall i : parent_i$ and $children_i$ form spanning tree rooted at p_r
- $\forall i \neq r : term_i = \text{false}$, $term_r = \text{true}$
- $\forall j \in children_r : outbuf_r[j] = \{M\}$ and otherwise
- $\forall i \neq r : outbuf_i[*] = \emptyset$
- $\forall i : inbuf_i[*] = \emptyset$
State Machine Description

Algorithm 1 (II)

Processor $p_i, i \neq r$:

- $\forall q_i \in Q_i$ with $\text{term}_i = \text{false}$ and $\text{inbuf}_i[\text{parent}_i] = X \neq \emptyset$: $(q_i, \phi_i, q'_i) \in \Phi_i$, where $q'_i = q_i$, except

- $\forall j \in \text{children}_i$: $\text{outbuf}_i[j]' := \text{outbuf}_i[j] \cup X$

- $\text{term}'_i := \text{true}, \text{inbuf}_i[*]' := \emptyset$

- For all other $q_i \in Q_i$ (idle transition): $(q_i, \phi_i, q'_i) \in \Phi_i$, where $q'_i = q_i$ except $\text{inbuf}_i[*]' := \emptyset$

Processor p_r:

- For all $q_r \in Q_r$ (idle transition): $(q_r, \phi_r, q'_r) \in \Phi_r$, where $q'_r = q_r$ except $\text{inbuf}_r[*]' := \emptyset$
General State Machine Descriptions (I)

Complex algorithms involve multiple state transitions
\((q^t_1, \phi^t_1, q^{t1'}_i), (q^t_2, \phi^t_2, q^{t2'}_i), \ldots \in \Phi_i \Rightarrow \text{“augmented” events}\)

- Deterministic transitions \(\Rightarrow\) Specification of \(q_i\) ("guard") of different transitions must be disjoint!
- It is not allowed to use conditional statements ("if ... then") when describing how \(q'_i\) looks like!
- But: One may introduce new variables (like \(X\)) in the description of \(q_i\) that can be used in the description of \(q'_i\):
 - Shorthand for multiple transitions, one for each possible value of \(X\)
 - Type of such variables usually clear from context
 (Algorithm 1: \(X = \{M\}, \text{fixed}\))
General State Machine Descriptions (II)

Static vs. dynamic behavior of algorithms:

- Being conservative by adding “dead” transitions (never executed in any run) does not harm
- Safe removal of dead transitions requires dynamic analysis
General State Machine Descriptions (II)

Static vs. dynamic behavior of algorithms:

- Being conservative by adding “dead” transitions (never executed in any run) does not harm
- Safe removal of dead transitions requires dynamic analysis

Complication due to requirement of $\text{inbuf}_i[*]' := \emptyset$:

- Occurs if multiple messages $X = \{m_1, m_2, \ldots\}$ may be present in $\text{inbuf}_i[*]$
 - all to be processed within every single transition
 \Rightarrow need one dedicated transition for every possible X
- Sometimes cumbersome to write . . .
General State Machine Descriptions (III)

Possible alternative: Define, for every possible $m_ℓ ∈ X$, an elementary transition $(q_i, φ_ℓ_i, q'_i)$:

- involves guard $m_ℓ ∈ X$ in the description of q_i
- applies only those changes to q'_i that result from processing $m_ℓ$
- removes only $m_ℓ$ from $inbuf_i[∗]$

Define the actual transitions in $Φ_i$ as compound transitions:

- CT is element of the transitive closure of the elementary transitions $⇒$ automatically implies $inbuf_i[∗] = ∅$
- Ensure deterministic $Φ_i$ by incorporating only one CT for a given X $⇒$ fixed order of processing multiple messages
Analysis of Algorithm 1

Simple inductions on the level in the tree will reveal that the algorithm works correctly in both

- synchronous systems
- asynchronous systems

and has the following complexity:

- Message complexity is $n - 1$, since exactly one M is sent over every edge in the spanning tree T.
- Time complexity for spanning tree with depth d [$d = 1$ for $n = 2$ processors, for example]:
 - Synchronous: d rounds
 - Asynchronous: $\leq d$ termination time ($\tau = 1$)
Proof Asynchronous Case

Lemma 74. *Every processor at distance* \(t \geq 0 \) *from* \(p_r \) *in* \(T \) *has got* \(M \) *and terminated by time* \(t \).

Proof. By induction:

- **Basis** \(t = 0 \): *Since* \(p_r \) *has* \(M \) *already initially at time* \(t = 0 \), *the statement is trivial."

- **Induction step:**
 - For our induction hypothesis, assume that every \(p_j \) *at distance* \(t - 1 \geq 0 \) *has got* \(M \) *and terminated by time* \(t - 1 \)
 - Show that every \(p_i \) *at distance* \(t \) *has got* \(M \) *and terminated by time* \(t \):

 Since \(p_j \) *sends* \(M \) *to its children by time* \(t - 1 \), *according to the induction hypothesis and the code,* \(p_i \) *receives and processes* \(M \) *by time* \(t - 1 + \tau \leq t \) *as asserted."
Pseudo-Code Algorithm 1 (Synchronous) (I)

Recall simple structure of synchronous lock-step rounds: In round \(k \geq 1 \),

- send round \(k \) message to all
- deliver all round \(k \) messages
- process all round \(k \) messages (state transition, also starts round \(k + 1 \))

Expressing this structure in detailed pseudo-code sometimes looks weird, even for very simple algorithms like Algorithm 1 . . .
Pseudo-Code Algorithm 1 (Synchronous) (II)

Code for processor p_i, $0 \leq i \leq n - 1$ for $n \geq 1$, including p_r:

1. $fwd := \text{false}$ /* No need for forwarding M yet */
2. $msg := \emptyset$ /* Don’t know M message yet */
3. if $p_i = p_r$ then
4. $msg := M$ /* Root initially learns M */
5. $fwd := (\text{children} \neq \emptyset)$ /* forward M if needed */
6. while $(msg \neq M) \lor fwd$ /* Loop over rounds */
7. if fwd then send msg to all children
8. /* receive all messages in the round */
9. if received M from parent then
10. $msg := M$
11. $fwd := (\text{children} \neq \emptyset)$ /* forward M if needed */
12. else $fwd := \text{false}$ /* makes M forwarded exactly once */
13. terminate
Lemma 77. Every processor at distance \(t \geq 0 \) from \(p_r \) in \(T \)

(i) receives \(M \) exactly once from its parent (or has it initially, i.e., \(p_r \) in the case of “round” \(t = 0 \)), in round \(t \),

(ii) terminates in round \(t \) if it has no children, or else sends \(M \) exactly once to every child before it terminates in round \(t + 1 \).

Proof. By induction:

Basis \(t = 0 \): The only processor at distance 0 from \(p_r \) is \(p_r \) itself, which has \(M \) already and sets \(fwd := (children \neq \emptyset) \) by the code. If \(fwd = \text{false} \), then \(p_r \) terminates immediately in “round” 0, or else sends \(M \) to its children before it terminates in round 1 (where it does of course not get \(M \) from its parent).

\(\square \)
Proof Synchronous Case (2)

Proof. (cont.) Induction step:

- For the induction hypothesis, assume that (i) and (ii) of the statement of our lemma hold for every p_j at distance $t - 1 \geq 0$.
- Show that (i) and (ii) hold for every p_i at distance t:

Applying the induction hypothesis to parent p_j of p_i reveals that p_j sends M in round t to its child p_i. Thus, p_i receives M for the first time in round t as asserted by (i).

By the code, p_i will either terminate at the end of round t, or else send M to its children in round $t + 1$. Since p_j has already terminated in round t, p_i cannot receive another M from its parent in round $t + 1$, hence sets $fwd := \text{false}$ and terminates at the end of round $t + 1$ as asserted by (ii). □
Nasty complications ⇒ Use simplified presentation of synchronous algorithms

```
1   msg := ∅ /* \( p_i \neq p_r \) doesn’t know \( M \) yet */
2   if \( p_i = p_r \) then \( msg := M \) /* \( p_r \) initially knows \( M \) */
3   do forever /* Loop over rounds */
4     if \( msg = M \) then
5       send \( M \) to all children /* Initially in \( outbuf_r[\ast] \) */
6       terminate
7     endif
8     /* receive all messages in the round */
9     if received \( M \) from \( parent \) then \( msg := M \)
10    enddo
```

Note: All \(p_j \) at distance \(t \) terminate in round \(t + 1 \)!
Broadcast via Flooding

Some processor p_r
- wants to broadcast message M
- without a given spanning tree rooted at p_r

Flooding algorithm:
- Processor p_r sends M to all its (direct) neighbors
- Every processor p_i that receives M from some p_j for the very first time sends M to all its neighbors $p_l \neq p_j$

Can be adapted to construct a spanning tree rooted at p_r
Pseudo-Code Algorithm 2

1. Code for p_i, $0 \leq i \leq n - 1$ for $n \geq 2$, with neighbors Nb_i
2. \textbf{VAR} parent := \emptyset; children := other := \emptyset; term := \text{false}
3. Root p_r only (initial state):
 \begin{itemize}
 \item parent := NULL // NULL = \emptyset when used in a set
 \item M is initially in transit from p_r to all its neighbors Nb_r
 \end{itemize}
4. on receiving M from neighbor p_j:
 \begin{itemize}
 \item if parent = \emptyset then
 \item \hspace{1em} parent := p_j; send $\langle\text{parent}\rangle$ to p_j
 \item \hspace{1em} if DONE then term := true else send M to $Nb \setminus \{p_j\}$
 \item else send $\langle\text{already}\rangle$ to p_j
 \end{itemize}
5. on receiving $m \in \{\langle\text{parent}\rangle, \langle\text{already}\rangle\}$ from neighbor p_j:
 \begin{itemize}
 \item if $m = \langle\text{parent}\rangle$ then add p_j to children
 \item else add p_j to other
 \item if DONE then term := true // must still answer M msgs!
 \end{itemize}
6. Macro DONE := children \cup other \cup parent = Nb
Correctness of Algorithm 2

We show that:

- The algorithm builds a parent/child relation T (hopefully a spanning tree) that is “locally eventually consistent” (next lemma)
- Every processor eventually terminates, such that the parent/child relation T is eventually
 - locally consistent:
 \[\forall j, i \neq r : \text{parent}_i = p_j \iff p_i \in \text{children}_j \]
 - static: does not change any more
- The finally constructed graph T is a spanning tree:
 - There is no cycle in T
 - Every p_i is reachable from the root p_r in T
Lemma 83. In every reachable configuration of an admissible execution C^0, ϕ^1, C^1, \ldots, the parent/child relation is locally eventually consistent:

$$\forall j, i \neq r : \text{parent}_i = p_j \Leftrightarrow (p_i \in \text{children}_j) \lor ((\langle \text{parent} \rangle \in \text{outbuf}_i[j] \cup \text{inbuf}_j[i])$$

Proof. Invariant induction on subsequent configurations. Let $LEC(C)$ be the assertion that configuration C is locally eventually consistent.

- Induction basis $k = 0$: Initially, $LEC(C^0)$ holds trivially.

- Induction step $k - 1 \rightarrow k$: Assume $LEC(C^{k-1})$ holds for $k \geq 1$. We have the following exhaustive cases for the (augmented) event ϕ^k in step (C^{k-1}, ϕ^k, C^k) [we abbreviate e.g. $\text{parent}_i = C^{k-1}.\text{parent}_i$ and $\text{parent}_i' = C^k.\text{parent}_i$]:

 - For all transitions that do not affect LEC, we obviously have $LEC(C^{k-1}) \Rightarrow LEC(C^k)$.
Safety Proof of Algorithm 2 (II)

Proof. (cont.)

- If $\phi^k = \text{del}(i, j, m)$, for some message m:
 - If $m = \langle \text{parent} \rangle$, it is just moved from $\text{outbuf}_i[j]$ to $\text{inbuf}_j[i]'$. Hence $LEC(C^k)$ holds since $LEC(C^{k-1})$ held.
 - For any other message m, the statement is not affected at all.
Safety Proof of Algorithm 2 (II)

Proof. (cont.)

If $\phi^k = \text{del}(i, j, m)$, for some message m:

- If $m = \langle \text{parent} \rangle$, it is just moved from $\text{outbuf}_i[j]$ to $\text{inbuf}_j[i]'$. Hence $\text{LEC}(C^k)$ holds since $\text{LEC}(C^{k-1})$ held.

- For any other message m, the statement is not affected at all.

If $\phi^k = \text{comp}(i)$, $i \neq r$:

- If $\text{parent}_i = \emptyset$ (Line 8), parent_i' is set to p_j and $\langle \text{parent} \rangle$ is put into $\text{outbuf}_i[j]'$. Hence, $\text{LEC}(C^k)$ holds.

- If $\text{parent}_i \neq \emptyset$ (Line 10), $\text{LEC}(C^k)$ continues to hold.
Proof. (cont.)

- If $\phi^k = \text{del}(i, j, m)$, for some message m:
 - If $m = \langle \text{parent} \rangle$, it is just moved from $\text{outbuf}_i[j]$ to $\text{inbuf}_j[i]'$. Hence $LEC(C^k)$ holds since $LEC(C^{k-1})$ held.
 - For any other message m, the statement is not affected at all.

- If $\phi^k = \text{comp}(i)$, $i \neq r$:
 - If $\text{parent}_i = \emptyset$ (Line 8), parent_i' is set to p_j and $\langle \text{parent} \rangle$ is put into $\text{outbuf}_i[j]'$. Hence, $LEC(C^k)$ holds.
 - If $\text{parent}_i \neq \emptyset$ (Line 10), $LEC(C^k)$ continues to hold.

- If $\phi^k = \text{comp}(i)$ puts p_j into $\text{children}_i'$ (Line 12):
 - Happens only upon reception of $\langle \text{parent} \rangle$ from p_j
 - \Rightarrow Since $LEC(C^{k-1})$ holds, $\text{parent}_j = p_i$, hence $LEC(C^k)$ continues to hold.
Safety Proof of Algorithm 2 (II)

- Standard procedure for invariant proofs
- No need to explicitly deal with steps that process multiple delivered messages at once (above proof allows arbitrary composition)
Safety Proof of Algorithm 2 (II)

- Standard procedure for invariant proofs
- No need to explicitly deal with steps that process multiple delivered messages at once (above proof allows arbitrary composition)

Inspecting the code reveals additional simple properties:

(a) Every processor p_i sets $parent_i$ and sends M to all neighbors $\neq parent_i$ at most once and never to $parent_i$

(b) Every processor p_i that receives M from p_j replies with either $\langle parent \rangle$ or $\langle already \rangle$

(c) In every execution, the sets $children_i$ and $other_i$ can never decrease
Liveness Proof of Algorithm 2 (I)

Lemma 86. Every process \(p_j \) eventually sets \(\text{parent}_j \neq \emptyset \) and sends \(M \) to all neighbors \(\neq \text{parent}_j \) exactly once.

Proof. Induction on distance \(k \) from \(p_r \) in communications graph:

- Induction basis \(k = 0 \): The root \(p_r \) evidently sets \(\text{parent}_r = \text{NULL} \) in line 4 and broadcasts \(M \).

- Induction step \(k - 1 \rightarrow k \):
 - Assume that all \(p_i \) at distance \(k - 1 \geq 0 \) set \(\text{parent}_i \neq \emptyset \) in line 4 or 8, where \(M \) is sent to all other neighbors except \(\text{parent}_i \).
 - Since the execution is admissible, every \(p_j \) at distance \(k \) eventually receives \(M \) from some \(p_i \), so sets \(\text{parent}_j := p_i \) and sends \(M \) to all neighbors in line 8, if it has not already done so.

- Since every process sets \(\text{parent}_j \neq \emptyset \) and sends \(M \) at most once by simple property (a), exactly once follows.
Liveness Proof of Algorithm 2 (II)

Theorem 87. Every processor p_i eventually terminates and constructs a spanning tree T rooted at p_r.

Proof. By previous lemma, every p_i sets $parent_i$ and sends M exactly once to all neighbors $\neq parent_i$. Hence:

- By simple property (b), they respond with $\langle \text{parent} \rangle$ or $\langle \text{already} \rangle$.
- Since the execution is admissible, every $\langle \text{parent} \rangle$ resp. $\langle \text{already} \rangle$ is eventually delivered and processed, which adds the sender processor to $children_i$ resp. $other_i$. By the simple property (c), p_i will eventually execute line 14 or 9 and terminate.
- Recalling local eventually consistency, local consistency follows.
Liveness Proof of Algorithm 2 (II)

Theorem 87. Every processor p_i eventually terminates and constructs a spanning tree T rooted at p_r.

Proof. By previous lemma, every p_i sets $parent_i$ and sends M exactly once to all neighbors $\neq parent_i$. Hence:

- By simple property (b), they respond with $\langle parent \rangle$ or $\langle already \rangle$.
- Since the execution is admissible, every $\langle parent \rangle$ resp. $\langle already \rangle$ is eventually delivered and processed, which adds the sender processor to $children_i$ resp. $other_i$. By the simple property (c), p_i will eventually execute line 14 or 9 and terminate.
- Recalling local eventually consistency, local consistency follows.

Must still show that the constructed graph T is a spanning tree:

- There is no cycle in T
- Every p_i is reachable from the root p_r in T
Liveness Proof of Algorithm 2 (III)

Proof. (con’t)

Suppose there is a cycle \(p_{i_1}, p_{i_2}, \ldots, p_{i_k+1} \) with \(i_{k+1} = i_1 \):

- Let \(\phi_l = \text{comp}(i_l) \) where \(\text{parent}_{i_l} \) is set and \(M \) is sent by \(p_{i_l} \)
- Parent/child relation obviously requires \(\phi_l \rightarrow \phi_{l+1} \)
- \(\phi_1 \rightarrow \phi_2, \phi_2 \rightarrow \phi_3 \) and \(\phi_k \rightarrow \phi_{k+1} = \phi_1 \) reveals a cycle in the causality relation \(\Rightarrow \) Contradiction

Suppose \(p_i \) is not reachable from \(p_r \) in \(T \):

- Parent/child relation was shown to be locally consistent
- Up-stream path starting from \(p_i \) could hence either
 - lead to cycle \(\Rightarrow \) already shown to be impossible
 - lead to root \(p_r \) (which has \(\text{parent}_r = \text{NULL} \)) \(\Rightarrow \) contradicts assumption that \(p_i \) is not reachable from \(p_r \)
Liveness Proofs via Induction? (I)

We said earlier that liveness proofs cannot be done via induction:

- Violations show up in infinite executions only
- Liveness proofs usually use norm functions
Liveness Proofs via Induction? (I)

We said earlier that liveness proofs cannot be done via induction:
- Violations show up in infinite executions only
- Liveness proofs usually use norm functions

So why does it work for Algorithm 2?
- Because we are dealing with bounded liveness here:
 - We know maximum end-to-end delay is finite \(\Rightarrow \tau = 1 \)
 - We know \(n \), and hence the maximum diameter (= path length) of the communication graph

Liveness property termination becomes a safety property termination within time \(X \)!
We could even define a suitable norm function: For any configuration C, let

- $w_i(C) = |parent_i| + |children_i| + |other_i|$ at processor p_i
- Note: $parent_r = NULL$ is treated like \emptyset
- $w_i(C) \leq n - 1$, since obviously [by the code]:
 - $p_j \neq p_i$ can appear in at most one of $parent_i$, $children_i$ or $other_i$
 - p_j is added upon processing of (first) M, $\langle parent \rangle$ or $\langle already \rangle$
 - p_i (and NULL in case of $p_i = p_r$) never occurs in any of those sets
Liveness Proofs via Induction? (III)

Consider trivial well-founded partial order \((\mathbb{N}, <)\):

- Start from vectors \(w = (w_{n-1}, \ldots, w_0)\) with \(0 \leq w_i \leq n - 1\)
- Interpret \(w\) as \(n\)-digit base-\(n\) number \(w = \sum_{i=0}^{n-1} w_in^i\), with usual meaning of \(<\)

Define \(f(C') = n^n - w(C') = n^n - \sum_{i=0}^{n-1} w_in^i\)

- Any comp event of Algorithm 2 either
 - increases some \(w_i\) (upon processing of \(M, \langle\text{parent}\rangle\) or \(\langle\text{already}\rangle\)), or
 - does not change any \(w_i\) (and hence the parent/child/other relation)
Liveness Proofs via Induction? (IV)

\[f(C') = n^n - w(C') = n^n - \sum_{i=0}^{n-1} w_i n^i \]

is a norm function:

- \(f(.) \) has a minimum \(\Rightarrow \) infinitely many “decreasing” comp events impossible

- all messages eventually delivered in admissible execution \(\Rightarrow \) infinitely many successive “non-increasing” comp events impossible without reaching terminal state

Once \(f(C') \) attains its minimum \(\Rightarrow T \) locally consistent.
What can we say for $n = \infty$?

If G consists of $n = \infty$ processors
- and contains a locally finite spanning subtree
- even when node degrees grow with the distance from p_r

Then, our analysis results continue to hold:
- Every processor sets its parent within finite time
- **BUT**: König's lemma reveals that, for any time t, there are processors which have not set parent yet \Rightarrow no finite termination time

Note: Need not hold for G with infinite degree nodes!
Performance Analysis of Algorithm 2

The algorithm constructs a spanning tree T both in
- synchronous systems
- asynchronous systems

Assume communications graph G with
- $n \geq 2$ processors
- $n - 1 \leq m \leq \frac{n(n-1)}{2}$ links
- diameter $D = \max_{x,y \in G} d(x, y)$ where $d(x, y) = \min_{W(x,y) \in G} |W(x,y)|$
Message Complexity

Theorem 95. *In both synchronous and asynchronous systems, Algorithm 2 has message complexity* $O(m)$

Proof. Algorithm 2 sends M

- twice (once in every direction) over every link $\notin T$
- once over every link $\in T$

\Rightarrow sends total of $2m - (n - 1) \leq (n - 1)^2$ messages M

Every M message is answered by either $\langle \text{parent} \rangle$ or $\langle \text{already} \rangle$

\Rightarrow total of $4m - (2n - 2) \leq 2(n - 1)^2$ messages

\square
Theorem 96. In every admissible execution in the synchronous model, Algorithm 2 constructs a BFS tree [where nodes at distance d in G are at depth d in T] in $O(D)$ rounds.

Proof. We will show that, at the end of round $t \geq 1$,

- the parent$_i$ variable of every p_i at distance $d_i \leq t$ from p_r in G points to a process at distance $d_i - 1$
- only M messages sent by processes at distance t are in transit

This implies:

- T is BFS tree
- The execution terminates within $D + 2$ rounds (one additional round for receiving last M and for receiving $\langle already \rangle$ reply)
Proof. (con’t)

Induction:

- Basis $t = 1$:
 - In the initial configuration, $\forall i \neq r : \text{parent}_i = \emptyset$ and M is in transit to all neighbors of p_r.
 - \Rightarrow All p_j at distance 1 from p_r get M in round 1, set $\text{parent}_j = p_r$, and forward M to their neighbors $\neq p_r$.

- Induction step: Assume that the hypothesis holds for $t - 1 \geq 1$, so every p_i that receives M in round t is at distance $d \leq t$:
 - If $d < t$, p_i has already set parent_i \Rightarrow does not forward M
 - If $d = t$, p_i did not see M in earlier round, hence sets parent_i and forwards M on the very first M as required.
 - Processors at distance $> t$ cannot receive M \Rightarrow do nothing
Stop: The round invariant used in the proof of Theorem 96 is actually too weak for the proof to actually go through! We said:

- The $parent_i$ variable of every p_i at distance $d_i \leq t$ from p_r in G points to a process at distance $d_i - 1$
- Only M messages sent by processes at distance t are in transit
Stop: The round invariant used in the proof of Theorem 96 is actually too weak for the proof to actually go through! We said:

- The parent\(_i\) variable of every \(p_i\) at distance \(d_i \leq t\) from \(p_r\) in \(G\) points to a process at distance \(d_i - 1\)
- Only \(M\) messages sent by processes at distance \(t\) are in transit

In the proof (case \(d = t\)), we (silently) assumed that processes \(p_i\) at distance \(t\) have parent\(_i = ∅\)!

- This does not follow from the original invariant!
- Need to add this requirement explicitly to the invariant!
Stop: The round invariant used in the proof of Theorem is actually too weak for the proof to actually go through! We said:

- The \textit{parent}_i variable of every \(p_i \) at distance \(d_i \leq t \) from \(p_r \) in \(G \) points to a process at distance \(d_i - 1 \)
- Only \(M \) messages sent by processes at distance \(t \) are in transit

In the proof (case \(d = t \)), we (silently) assumed that processes \(p_i \) at distance \(t \) have \textit{parent}_i = \emptyset!

- This does not follow from the original invariant!
- Need to add this requirement \textit{explicitly} to the invariant!

Make sure to state invariants that are \textbf{strong enough}!
Theorem 99. In every admissible execution of an asynchronous system, Algorithm 2 constructs a spanning tree within time $O(D)$

Proof. A simple induction proof—left as an exercise—shows that, by time t, the message M reaches all p_i at distance at most t from p_r.

In asynchronous systems, the spanning tree T

- need not be BFS
- can even be a chain (depth $n - 1$), although $D < n - 1$ (why is there no contradiction here?)
Depth-First Search Spanning Tree

The BFS tree construction (Algorithm 2) ensures

- maximum concurrency and hence speed, but
- may connect direct neighbors in G via long paths (via root) in T

Alternative: Depth-first search Algorithm 2.3

- Direct neighbors in G are on path from the root in T
- Recursive pre-order traversal
- Concurrent—but in fact serialized—implementation of recursive DFS algorithm

Theorem 100. Algorithm 3 has time complexity $O(m)$ and message complexity $O(m)$

Proof. See textbook.

-
Leader Election in Rings
Motivation

The ability to elect a leader is often useful:

- Programming distributed applications typically easier in master/slave settings:
 - Broadcasting site (using e.g. a spanning tree)
 - Coordinator in distributed transactions
- Handling exceptional situations often requires a leader:
 - Breaking deadlocks
 - Token loss recovery in token rings/buses

Using dynamic rather than static leader election advantageous:

- Allows varying set of processors to choose from
- Allows to re-elect leader in case of leader failure
Definition Leader Election Problem

Every process p_i has boolean variable $leader_i$, initially false, that can be changed at most once before termination \Rightarrow Terminal states T_i partitioned in (closed) sets of

- elected states ($leader_i = \text{true}$)
- non-elected states (p_i may/may not know leader)

Safety properties:

- Every processor changes $leader_i$ at most once
- At most one processor is ever in the elected state

Liveness properties:

- Eventually, every processor terminates
- Eventually, some processor enters an elected state
Rings

We consider processors arranged in a ring network. Why?
- Simple to analyze
- Abstraction of token ring
- Lower bounds for rings apply to arbitrary topologies

Oriented rings:
- Processors consistently distinguish left and right:
 - If p_i sends msg to its right neighbor p_j, then p_j gets msg from left neighbor
 - Put under the rug: Index j in $outbuf_i[j], inbuf_i[j]$ is actually not processor id p_j, but local link number
- Sending message to left neighbor \Leftrightarrow clockwise direction
Classification of Algorithms for Rings

Direction:
- **Unidirectional**: Messages sent in one direction only
- **Bidirectional**: Messages sent in both directions

Availability of unique IDs:
- **Non-anonymous**: Every processor p_i has UID id_i
- **Anonymous**: Processors are indistinguishable

Knowledge of ring size:
- **Non-uniform** algorithms: Processors know n
- **Uniform** algorithms: Same algorithm for every n
Overview of Upcoming Results

Our first impossibility result:
- There is no anonymous leader election algorithm

Some simple leader election algorithms:
- Asynchronous: $O(n^2)$ resp. $O(n \log n)$ messages
- Synchronous: $O(n)$ resp. $O(n \log n)$ messages

First lower bound results:
- Every asynchronous LE algorithm needs $\Omega(n \log n)$ msg’s
- Every synchronous LE algorithm needs $\Omega(n)$ messages if certain tricks are allowed
- $\Omega(n \log n)$ messages otherwise

Lower bounds asymptotically tight: $\Omega \rightarrow \Theta$
Asynchronous Leader Election
Leader Election in Anonymous Rings

Recall: The n-processor leader election algorithm A^n_i (including UID) at processor p_i is called

- uniform if $A^n_i = A^m_i$ for every ring size n, m
- anonymous if $A^n_i = A^n_j$ for every pair of processors i, j
Leader Election in Anonymous Rings

Recall: The n-processor leader election algorithm A^n_i (including UID) at processor p_i is called

- uniform if $A^n_i = A^m_i$ for every ring size n, m
- anonymous if $A^n_i = A^n_j$ for every pair of processors i, j

Theorem 108. There is no anonymous deterministic leader election algorithm in rings.
Leader Election in Anonymous Rings

Recall: The n-processor leader election algorithm A_i^n (including UID) at processor p_i is called

- uniform if $A_i^n = A_i^m$ for every ring size n, m
- anonymous if $A_i^n = A_j^n$ for every pair of processors i, j

Theorem 108. There is no anonymous deterministic leader election algorithm in rings.

Proof. By contradiction: We show that there is not even a synchronous non-uniform anonymous anonymous LE algorithm:

- Induction on number of rounds reveals that every p_i sends and receives the same messages

Electing exactly one leader requires breaking this symmetry \Rightarrow impossible
A Simple Asynchronous LE Algorithm

Every processor \(p_i, 0 \leq i \leq n - 1 \):

- sends its \(id_i \) to left neighbor
- on receiving a message with \(mid \) from the right neighbor:
 - if \(mid > id_i \), forward it to the left (\(p_i \) will never be leader)
 - if \(mid = id_i \) (got back own message), enter elected state and send termination message
 - if \(mid < id_i \), then swallow message
- on receiving termination message from right
 - if \(p_i \) not yet in elected state \(\Rightarrow \) forward termination message to the left and enter non-elected state
 - if \(p_i \) in elected state \(\Rightarrow \) swallow termination message
Correctness of Simple LE Algorithm

Safety and liveness proofs based on:

- Only message from p_i with $id_i = \max$ never swallowed
- Only p_i ever receives a message with $mid = id_i$ from the right and thus enters elected state
- All $p_j \neq p_i$ enter non-elected state via p_i’s termination msg

Detailed proofs left as a simple exercise.
Theorem 111. *The simple leader election algorithm has termination time* $2n$ *and sends* $\Theta(n^2)$ *messages*
Complexity Analysis of Simple LE Algorithm

Theorem 111. The simple leader election algorithm has termination time $2n$ and sends $\Theta(n^2)$ messages

Proof. The algorithm terminates after a full circulation of both p_i’s message and the termination message, taking time n each.
Complexity Analysis of Simple LE Algorithm

Theorem 111. *The simple leader election algorithm has termination time* $2n$ *and sends* $\Theta(n^2)$ *messages*

Proof. The algorithm terminates after a full circulation of both p_i’s message and the termination message, taking time n each.

Upper bound on message complexity:
- Every of the n processors sends/forwards at most $n + 1$ messages
- \Rightarrow need at most $O(n^2)$ total messages
Complexity Analysis of Simple LE Algorithm

Theorem 111. The simple leader election algorithm has termination time $2n$ and sends $\Theta(n^2)$ messages.

Proof. The algorithm terminates after a full circulation of both p_i's message and the termination message, taking time n each.

Upper bound on message complexity:

- Every of the n processors sends/forwards at most $n + 1$ messages
 - \implies need at most $O(n^2)$ total messages

Lower bound on message complexity:

- Consider ring $0, n - 1, n - 2, \ldots, 2, 1$
 - The message from p_i is sent/forwarded exactly $i + 1$ times
 - \implies need $n + \sum_{i=0}^{n-1} (i + 1) = \frac{n^2 + 3n}{2} = \Omega(n^2)$ messages

\square
LE Algorithm by Hirschberg & Sinclair

Improve the message complexity of our simple algorithm by a more clever (“divide and conquer”) forwarding:

- For $\ell \geq 0$, consider 2^ℓ-neighborhood of any p_i
 - p_i itself
 - $2^\ell + 2^\ell$ consecutive processors to the left and right

- Algorithm proceeds in consecutive phases $\ell \geq 0$ (not synchronized) at every processor

- In phase ℓ, p_i checks whether it is leader in its 2^ℓ-neighborhood:
 - If p_i is leader \Rightarrow proceed to next phase
 - Otherwise \Rightarrow get stuck

\Rightarrow Fewer and fewer processors proceed to higher phases
How to Explore 2^ℓ-Neighborhood?

Processor p_i sends $\langle \text{probe}, id, \ell, hop \rangle$ messages to both left and right neighbor

- if p_j receives $\langle \text{probe} \rangle$ with $id > id_j$, it either
 - forwards it in the same direction, with increased hop count (if $hop < 2^\ell$)
 - sends $\langle \text{reply}, id, \ell \rangle$ back in the opposite direction (if $hop \geq 2^\ell$, i.e., end of neighborhood reached)

- if p_j receives $\langle \text{probe} \rangle$ with $id \leq id_j$, it swallows the msg

- if p_j receives $\langle \text{reply} \rangle$ with $id \neq id_j$, it forwards the message in the same direction

$\Rightarrow p_i$ gets back $\langle \text{reply}, id_i, \ell \rangle$ from left and right only if $id_i = \max$ in p_i’s 2^ℓ-neighborhood (and gets stuck otherwise)
Complete H&S LE Algorithm 5

Complete code:

- The above forwarding/swallowing rules +
- Leader termination: A processor that becomes leader in its 2^L-neighborhood with $L = \lceil \log_2(n - 1) \rceil - 1$ (that is, $2^{L+1} + 1 \geq n$) could already terminate
 - actually terminates in elected state when it gets own $\langle probe \rangle$ in exploration (in phase $\lceil \log_2 n \rceil$)
 - sends termination message to the left
- Non-leader termination: A processor not in the elected state that receives a termination message from the right
 - terminates in the not-elected state
 - forwards termination message to the left
Analysis of Algorithm 5

Correctness proof uses same argument as simple LE algorithm

Message and time complexity determined by exploration of 2^ℓ-neighborhood of any p_i:

- $2 \cdot 2^\ell \langle probe \rangle$ and $2 \cdot 2^\ell \langle reply \rangle$ messages
- totally $4 \cdot 2^\ell$ messages
- takes at most $2 \cdot 2^\ell$ time since left and right neighborhood explored concurrently

Last fully explored phase is $\ell = L = \lceil \log_2 (n - 1) \rceil - 1$
Time Complexity of Algorithm 5

Theorem 116. *Algorithm 5 has time complexity* $O(n)$
Time Complexity of Algorithm 5

Theorem 116. Algorithm 5 has time complexity $O(n)$

Proof. Time complexity determined by the eventual leader p_i

- Explorations of p_i's 2^ℓ-neighborhoods, $0 \leq \ell \leq L$ yields

\[
\sum_{\ell=0}^{L} 2 \cdot 2^\ell = 2(2^{L+1} - 1) = 2(2^{\left\lceil \log_2(n-1) \right\rceil} - 1)
\]

\[
\leq 2(2^{\log_2(n-1)+1} - 1) = O(n)
\]

- Additional time $O(n)$ required for
 - termination detection:
 \[
 \left\lfloor \log_2 n \right\rfloor - L = \left\lfloor \log_2 n \right\rfloor - \left\lfloor \log_2(n-1) \right\rfloor + 1 \text{ additional phases (with leader only); last one stops after time } n
 \]
 - termination message circulation: n
Lemma 117. The number of processors that are still leaders of their 2^ℓ-neighborhood at the end of phase $\ell \geq 0$ [and thus enter phase $\ell + 1$] is at most $\frac{n}{2^{\ell+1}}$

Note: Number of leaders surviving last phase $L = \lceil \log_2(n - 1) \rceil - 1$ is 1 as required, since

$$2 > \frac{2^{L+1} + 1}{2^L + 1} \geq \frac{n}{2^L + 1}$$
Message Complexity of Algorithm 5 (I)

Lemma 117. The number of processors that are still leaders of their 2^ℓ-neighborhood at the end of phase $\ell \geq 0$ [and thus enter phase $\ell + 1$] is at most $\frac{n}{2^\ell + 1}$

Note: Number of leaders surviving last phase $L = \lceil \log_2(n - 1) \rceil - 1$ is 1 as required, since

$$2 > \frac{2L+1 + 1}{2^L + 1} \geq \frac{n}{2^L + 1}$$

Proof. Two leaders p_i, p_j of their 2^ℓ-neighborhoods can at most share the same left resp. right neighborhood

- at least 2^ℓ processors $\neq p_i, p_j$ in between
- dense packing over the entire ring \Rightarrow at most $n/(2^\ell + 1)$ leaders
Theorem 118. Algorithm 5 sends $O(n \log n)$ messages.
Theorem 118. Algorithm 5 sends $O(n \log n)$ messages

Proof. We know:

- Total number of any active p_i’s exploration messages for its 2^ℓ-neighborhood is $4 \cdot 2^\ell$
- Total number of active p_i’s in phase $\ell > 0$ is at most $n/(2^\ell-1 + 1)$
- Total number of active p_i’s in phase $\ell = 0$ is n
- Termination detection and termination message circulation adds at most $O(n)$ additional messages

Hence, the total message complexity (including termination) is

$$O(n) + 4n + \sum_{\ell=1}^{L} 4 \cdot 2^\ell \frac{n}{2^\ell-1 + 1} \leq O(n) + 8nL = O(n \log n)$$
Asynchronous Lower Bound on Messages

We will show that ANY leader election algorithm A that
(a) works in asynchronous rings
(b) is uniform
(c) elects processor with maximum id
(d) guarantees that every processor learns the id of the leader
has message complexity $\Omega(n \log n)$
We will show that ANY leader election algorithm A that (a) works in asynchronous rings (b) is uniform (c) elects processor with maximum id (d) guarantees that every processor learns the id of the leader has message complexity $\Omega(n \log n)$

Conditions:
- (a) necessary for lower bound to hold, (b) for our proof to work
- (c) and (d) simplify the proof
Reduction

The important principle of reduction can be used to get rid of conditions (c) and (d)

Assume that

- we are given some uniform asynchronous LE algorithm B that does not satisfy (c) and (d)
- with less than $\Omega(n \log n)$ additional messages, we can derive an algorithm A that satisfies (c) and (d) from B

\Rightarrow B must also send $\Omega(n \log n)$ messages, since A derived from B would need less than $\Omega(n \log n)$ otherwise

Note: Converting any B to A needs only $O(n)$ additional messages
Definitions Lower Bound Proof

We consider open schedules σ, defined as
- schedule σ of some execution prefix of algorithm A
- there is an edge e of the ring such that no message over e is delivered (but maybe sent) in σ
- open schedule can be finite and need not be admissible

Additional assumptions for our proof:
- n is a power of 2 (can be removed by reduction)
- the set S of identifiers is an arbitrary subset of the natural numbers
Lemma 122. For $n = 2$, any asynchronous LE algorithm A has an open schedule σ where at least $M(2) = 1$ messages are delivered.
Lemma 122. For \(n = 2 \), any asynchronous LE algorithm \(A \) has an open schedule \(\sigma \) where at least \(M(2) = 1 \) messages are delivered.

Proof. Consider \(p_0 \) and \(p_1 \) where w.l.o.g. \(id_0 > id_1 \).

In any admissible execution \(\alpha \),

\(p_0 \) must send a message with \(id_0 \) to \(p_1 \) such that it can learn \(id_0 \), as required by condition (d)

\(\sigma \) is prefix of \(\alpha \) up to and including the first del-event, w.l.o.g. over edge \((p_0, p_1)\)

\(\Rightarrow \) other edge \((p_1, p_0)\) is open and exactly \(M(2) = 1 \) messages are delivered as required

\(\square \)
Lemma 123. Any asynchronous LE algorithm A has an open schedule σ where at least $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$ messages are delivered for $n = 2^\ell$, $\ell > 1$, and $M(2) = 1$.
Lemma 123. Any asynchronous LE algorithm A has an open schedule σ where at least $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$ messages are delivered for $n = 2^\ell$, $\ell > 1$, and $M(2) = 1$.

Proof. By induction. Basis $n = 2$ is provided by previous lemma. Induction step:

- Split identifier set S into two halves S_1 and S_2, assigned to two rings R_1 and R_2 of $n/2$ processors each.

- Inductive hypothesis:
 - R_1 has open schedule σ_1 with at least $M(n/2)$ messages and $e_1 = (p_1, q_1)$ is open edge
 - R_2 has open schedule σ_2 with at least $M(n/2)$ messages and $e_2 = (p_2, q_2)$ is open edge
Lower Bound Proof (III)

Proof. (cont.)

Paste R_1 and R_2 together in a big ring R, by replacing e_1, e_2 by $e_p = (p_1, p_2)$ and $e_q = (q_1, q_2)$. Because of uniformity of A:

- Processors in R_1 cannot tell difference to left half of $R \Rightarrow$ same schedule σ_1 also in R
- Processors in R_2 cannot tell difference to right half of $R \Rightarrow$ same schedule σ_2 also in R

Distinguish 2 cases: Without unblocking e_p and e_q,

1. the catenated schedule $\sigma_1 \sigma_2$ can be extended by some schedule σ_3 where additional $\frac{1}{2}(n/2 - 1)$ messages are received \Rightarrow sought open schedule $\sigma = \sigma_1 \sigma_2 \sigma_3$ found and we are done

2. every extension of $\sigma_1 \sigma_2$ leads to a quiescent state
Lower Bound Proof (IV)

Proof. (cont.)

Let

- σ_3 be an extension of $\sigma_1 \sigma_2$ that leads to a quiescent state (without unblocking e_p, e_q)

- σ'_4 be an extension of $\sigma_1 \sigma_2 \sigma_3$ to an admissible schedule:
 - all processors terminate
 - all messages are delivered on e_p and e_q

Claim: At least $n/2$ messages are delivered in σ'_4, since

- every processor in the half of R that does not contain the leader must get the leader’s id

- until the beginning of σ'_4, there has been no communication between the two halves
Lower Bound Proof (V)

Proof. (cont.)

Unfortunately, $\sigma_1\sigma_2\sigma_3\sigma_4'$ is not open.

Let σ'_4 be prefix of σ''_4 when $n/2 - 1$ additional messages have been delivered

- before σ'_4, system was quiescent
- set of processors P, Q that delivered additional messages can only expand outwards around e_p and e_q
- $P \cap Q = \emptyset$ since less than $n/2$ messages have been delivered in σ'_4 and every half consists of at least $n/2$ processors
- Assume that majority of the $n/2 - 1$ messages have been delivered in $P \Rightarrow$ at least $\frac{1}{2}(n/2 - 1)$ messages

\square
Proof. (cont.)

Let σ_4 be the sequence of events of σ'_4 that involve processors in P only.

Claim: In $\sigma = \sigma_1\sigma_2\sigma_3\sigma_4$, processors in P behave as in $\sigma_1\sigma_2\sigma_3\sigma''_4$ and hence deliver at least $\frac{1}{2}(n/2 - 1)$ messages, since

- $P \cap Q = \emptyset$ imply that processors in P cannot have heard anything from processors in Q.
- Note: The ability to use σ_4 instead of σ'_4 relies heavily on asynchrony assumption (a).

Hence, in σ,

- e_q can be left open.
- still, at least $2M(n/2) + \frac{1}{2}(n/2 - 1)$ messages are delivered.
Final Lower Bound Proof

We know now that any LE algorithm A delivers at least

1. $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$
2. $M(2) = 1$

messages in some admissible execution, since it does so in an open schedule
Final Lower Bound Proof

We know now that any LE algorithm A delivers at least

\[M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1) \]

\[M(2) = 1 \]

messages in some admissible execution, since it does so in an open schedule.

Expanding the definition of $M(n)$ reveals

\[\log_2 n \text{ terms of order } \Omega(n) \text{ each} \]

\[M(n) = \Omega(n \log n) \]
Final Lower Bound Proof

We know now that any LE algorithm A delivers at least

- $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$
- $M(2) = 1$

messages in some admissible execution, since it does so in an open schedule

Expanding the definition of $M(n)$ reveals

- $\log_2 n$ terms of order $\Omega(n)$ each
- $M(n) = \Omega(n \log n)$

This finally confirms our lower bound $\Omega(n \log n)$.
Synchronous Leader Election
Leader Election in Synchronous Rings

In asynchronous systems,

- messages can be arbitrarily delayed
- information can only be disseminated by sending a message
Leader Election in Synchronous Rings

In asynchronous systems,
- messages can be arbitrarily delayed
- information can only be disseminated by sending a message

In synchronous systems,
- messages must arrive by the beginning of the next round
- information can also be disseminated by not sending a message ("communication by time")
Leader Election in Synchronous Rings

In asynchronous systems,
- messages can be arbitrarily delayed
- information can only be disseminated by sending a message

In synchronous systems,
- messages must arrive by the beginning of the next round
- information can also be disseminated by not sending a message ("communication by time")

Question: Does this help for solving Leader Election?
Leader Election in Synchronous Rings

In asynchronous systems,
- messages can be arbitrarily delayed
- information can only be disseminated by sending a message

In synchronous systems,
- messages must arrive by the beginning of the next round
- information can also be disseminated by not sending a message ("communication by time")

Question: Does this help for solving Leader Election? YES!
A Synchronous LE Algorithm

We consider
- a unidirectional ring
- a non-uniform algorithm (knows ring size n)

The algorithm:
- Proceeds in a finite (but unbounded) number of consecutive phases $x \geq 0$
- Every phase x consists of n rounds where
 - process p_i with $id_i = x$ sends message containing id_i
 - every p_j that gets message with $id \neq id_j$ forwards message to the left and terminates as a non-leader
 - p_i terminates as the leader when it gets msg $id = id_i$
Properties Synchronous LE Algorithm

The algorithm:

- Elects the processor p_i with minimal id_i as leader
- Requires synchronous rounds
- Non-uniformity is not vital: More advanced synchronous Algorithm 6 in textbook is uniform
Properties Synchronous LE Algorithm

The algorithm:
- Elects the processor p_i with minimal id_i as leader
- Requires synchronous rounds
- Non-uniformity is not vital: More advanced synchronous Algorithm 6 in textbook is uniform

Trivial performance analysis:
- Message complexity: n
- Time complexity: $(id_i + 1)n$ rounds
Properties Synchronous LE Algorithm

The algorithm:
- Elects the processor p_i with minimal id_i as leader
- Requires synchronous rounds
- Non-uniformity is not vital: More advanced synchronous Algorithm 6 in textbook is uniform

Trivial performance analysis:
- Message complexity: n
- Time complexity: $(id_i + 1)n$ rounds

But:
- Termination time depends on particular choice of id’s
- The id’s are not just compared but used for deciding when to send a message
Some definitions:

- Two rings $R_1 = (x_1, x_2, \ldots, x_n)$ and $R_2 = (y_1, y_2, \ldots, y_n)$ are order-equivalent if $x_i < x_j \iff y_i < y_j$ for any i, j.

- A ring is spaced if there are at least n unused id’s between any two x_i, x_j.

- Processors p_i in R_1 and p_j in R_2 are matching if they have same distance from processor with minimum id.

- Local executions α_1 and α_2 at p_1 and p_2 in R_1 and R_2, respectively, are called similar if, for all rounds k,
 - p_1 sends a message to left (right) neighbor in round k in $\alpha_1 \iff p_2$ does so in α_2.
 - p_1 terminates as a leader/non-leader in round k in $\alpha_1 \iff p_2$ does so in α_2.
Comparison-Based Algorithms (II)

Some more definitions:

- An algorithm is called **comparison-based** if every pair of matching processors have similar behaviors in order equivalent rings R_1 and R_2.

- A round r is **active** in an execution if some processor sends a message in round r.

- r_k is the number of the k-th active round [with $r_0 = 0$ representing the (virtual) “initial round” ending in the initial configuration.]

In case of a comparison-based algorithm:

- Order equivalent rings have the same sequence of active rounds r_k, $k \geq 0$.

- We will show even more ...
Lemma 135. Let p_1 and p_2 be processors with identical k-neighborhoods, $k \geq 0$, in order-equivalent rings R_1 and R_2. If p_1 and p_2 execute a comparison-based algorithm, they are in the same state after rounds $0, \ldots, r_k$.
Behavior in Identical Neighborhoods

Lemma 135. Let p_1 and p_2 be processors with identical k-neighborhoods, $k \geq 0$, in order-equivalent rings R_1 and R_2. If p_1 and p_2 execute a comparison-based algorithm, they are in the same state after rounds $0, \ldots, r_k$.

Proof. By induction: For $k = 0$, p_1 and p_2 have the same $id_1 = id_2$ and are hence in the same initial state after (virtual) round $r_0 = 0$.

Induction step: Since identical k-neighborhood (= $p_i + k$ left + k right neighbors) implies identical $k - 1$-neighborhood, we can assume that

- p_1 and p_2 are in the same state after (the same!) r_{k-1}
- left and right neighbor p^l_1, p^r_1 of p_1 are in same state as p^l_2, p^r_2
- in non-active rounds $r_{k-1} + 1, \ldots, r_k - 1$, p_1 and p_2, as well as p^l_1 and p^l_2, and also p^r_1 and p^r_2, perform the same state transitions
- in round r_k, p_1 and p_2 receive the same messages \Rightarrow perform the same state transition.
Behavior in O-E Neighborhoods

Lemma 136. Let \(p_1 \) and \(p_2 \) be processors with order-equivalent \(k \)-neighborhoods in a single spaced ring \(R \). For any comparison-based LE algorithm, \(p_1 \) and \(p_2 \) have similar behaviors in rounds 1, \ldots, \(r_k \).
Lemma 136. Let p_1 and p_2 be processors with order-equivalent k-neighborhoods in a single spaced ring R. For any comparison-based LE algorithm, p_1 and p_2 have similar behaviors in rounds $1, \ldots, r_k$.

Proof. Since R is spaced and p_1, p_2 have order-equivalent k-neighborhoods, we can construct another ring R' that satisfies:

- p_2’s k-neighborhood in R' is identical with p_1’s k-neighborhood in R
- p_2 in R' matches p_2 in R
- R and R' are order-equivalent
- the id’s in R' are unique

The lemma follows since, in rounds $1, \ldots, r_k$,

- p_1 in R has identical state as p_2 in R' by previous lemma
- p_2 in R' is matching to p_2 in $R \Rightarrow$ similar behaviors since algorithm is comparison-based
We know that

- processors with order-equivalent neighborhoods have similar behaviors
- we need to find just one ring where any algorithm needs $\Omega(n \log n)$ messages
Outline Lower Bound Proof

We know that
- processors with order-equivalent neighborhoods have similar behaviors
- we need to find just one ring where any algorithm needs $\Omega(n \log n)$ messages

We will proceed as follows:
- Construct a ring S_n where any p_i’s neighborhood is order-equivalent to many other p_j’s neighborhood
- At least one processor sends a msg per active round \Rightarrow many messages sent per active round
- Show that there is a lower bound for the number of active rounds in S_n
- Summing up over all active rounds yields $\Omega(n \log n)$
Consider the ring $R_n = (0, 1, 2, \ldots, n - 1)$ for $n = 2^\ell$.

- Let $\text{rev}(i)$ be the integer corresponding to the reverse binary representation of i

- Example: $i = 4 = 100_2 \Rightarrow \text{rev}(i) = 1 = 001_2$

- Define $R_n^{\text{rev}} = (\text{rev}(0), \text{rev}(1), \ldots, \text{rev}(n - 1))$
A Highly Symmetric Ring S_n

Consider the ring $R_n = (0, 1, 2, \ldots, n-1)$ for $n = 2^\ell$.

- Let $\text{rev}(i)$ be the integer corresponding to the reverse binary representation of i

 Example: $i = 4 = 100_2 \Rightarrow \text{rev}(i) = 1 = 001_2$

- Define $R_{n}^{\text{rev}} = (\text{rev}(0), \text{rev}(1), \ldots, \text{rev}(n-1))$

The ring R_{n}^{rev} has interesting properties:

- One can show that all segments of 2^k consecutive processors are order equivalent

- This property is preserved in the spaced ring S_n, where every id in R_{n}^{rev} is replaced by $(n + 1) \cdot id + n$
Lemma 139. For $k \leq n/8$ and all k-neighborhoods N of S_n, there are more than $\frac{n}{2(2k+1)}$ k-neighborhoods that are order equivalent to N (including N).
Lemma 139. For \(k \leq n/8 \) and all \(k \)-neighborhoods \(N \) of \(S_n \), there are more than \(\frac{n}{2(2k+1)} \) \(k \)-neighborhoods that are order equivalent to \(N \) (including \(N \)).

Proof. Let \(j = 2^\ell \) be such that \(2(2k + 1) > j \geq 2k + 1 \).

Partition \(S_n \) in \(n/j > \frac{n}{2(2k+1)} \) consecutive segments, such that

\begin{itemize}
 \item one segment totally encompasses \(N \)
 \item all segments are order equivalent, by the properties of \(S_n \)
\end{itemize}
Order Equivalent Neighborhoods in S_n

Lemma 139. For $k \leq n/8$ and all k-neighborhoods N of S_n, there are more than \(\frac{n}{2(2k+1)} \) k-neighborhoods that are order equivalent to N (including N).

Proof. Let $j = 2^\ell$ be such that $2(2k+1) > j \geq 2k + 1$.

Partition S_n in $n/j > \frac{n}{2(2k+1)}$ consecutive segments, such that

- one segment totally encompasses N
- all segments are order equivalent, by the properties of S_n

\[\square \]

Corollary 139. At least $\frac{n}{2(2k+1)}$ messages are sent in the k-th active round.
Lemma 140. Any leader election algorithm needs $T \geq n/8$ active rounds in S_n for $n \geq 8$.
Lemma 140. Any leader election algorithm needs $T \geq n/8$ active rounds in S_n for $n \geq 8$.

Proof. Suppose $T < n/8$ and let p_i be the eventual leader. By the previous lemma, there are more than

$$\frac{n}{2(2T + 1)} > \frac{n}{2(2n/8 + 1)} = \frac{2n}{n + 4} > 1$$

order equivalent T-neighborhoods.

Hence,

- at least one p_j has order equivalent T-neighborhood w.r.t. leader p_i

\Rightarrow p_j is also elected by Lemma 136.

\Rightarrow Contradiction.
Theorem 141. For every \(n = 2^\ell \geq 8 \), there is a ring \(S_n \) where every synchronous leader election algorithm \(A \) sends \(\Omega(n \log n) \) messages.
Comparison-based Lower Bound

Theorem 141. For every \(n = 2^\ell \geq 8 \), there is a ring \(S_n \) where every synchronous leader election algorithm \(A \) sends \(\Omega(n \log n) \) messages.

Proof. By the previous lemmas, the number of messages is more than

\[
\frac{n}{8} \sum_{k=1}^{n/8} \frac{n}{2(2k + 1)} \geq \frac{n}{6} \sum_{k=1}^{n/8} \frac{1}{k} = \Omega(n \log n)
\]

Note that \(A \) needs to be comparison-based on id’s out of \(\{0, 1, \ldots, n^2 + 2n - 1\} \) only:

- largest \(id_{\text{max}} \) in \(S_n \) is \((n + 1) \text{rev}(n - 1) + n = n^2 + n - 1 \)
- Ring \(R' \) in Lemma 136 may need \(n \) additional id’s larger than \(id_{\text{max}} \)
Time-bounded Algorithms

Recall synchronous algorithm:
- Time complexity depends on choice of id’s
- What if we disallow such a behavior?

Consider time-bounded leader election algorithms:
- Draw any subset S_n of n distinct id’s from \mathbb{N}
- Worst-case running time must be bounded (over all S_n)

We will show:
- Any time-bounded algorithm also needs $\Omega(n \log n)$ messages
- We will use reduction to comparison-based algorithms
Some Preparations ...

A synchronous LE algorithm is \(t \)-comparison based for:

- identifier set \(S \)
- order equivalent rings \(R_1 \) and \(R_2 \) with id’s from \(S \)

if every pair of matching processors have similar behaviors in rounds \(1, \ldots, t \).

We also need:

Theorem 143. (Ramsey’s Theorem)

For all integers \(k, \ell \) and \(t \), there is some integer \(f(k, \ell, t) \) such that for every set \(S \) with \(|S| = f(k, \ell, t) \) and every \(t \)-coloring of the \(k \)-subsets of \(S \), some \(\ell \)-subset of \(S \) has all its \(k \)-subsets with the same color.
Lemma 144. Let A be any synchronous time-bounded LE algorithm with running time bound $r(n)$ in rings with size n. Then, there is some set C_n of $n^2 + 2n$ identifiers such that A is $r(n)$-comparison-based over C_n.
Lemma 144. Let A be any synchronous time-bounded LE algorithm with running time bound $r(n)$ in rings with size n. Then, there is some set C_n of $n^2 + 2n$ identifiers such that A is $r(n)$-comparison-based over C_n.

Proof. Consider n-subsets $S_1, S_2 \subseteq \mathbb{N}$:

- S_1, S_2 are equivalent if matching processors in every pair of order-equivalent rings R_1 (using id’s from S_1) and R_2 (using id’s from S_2) have similar behavior.

The equivalence relation partitions the n-subsets of \mathbb{N} into finitely many equivalence classes:

- There are only finitely many $[(n - 1)!]$ different orders R_i with id’s from S_i.
- There are only finitely many different possible message and termination patterns in $r(n)$ (finitely many!) rounds for any R_i.

Time-bounded LE Lower Bound (II)

Proof. (cont.) Apply Ramsey’s Theorem:

- t is number of equivalence classes (colors)
- $\ell = n^2 + 2n$
- $k = n$

Since \mathbb{N} is infinite, there is

- some subset $S \subseteq \mathbb{N}$ with size $f(k, \ell, t)$
- some subset $C_n \subseteq S$ with $|C_n| = n^2 + 2n$
- where all n-subsets of C_n have same color (are equivalent)

Hence, algorithm A is $r(n)$-comparison-based over C_n:

- Any two order-equivalent rings R_1, R_2 with id’s from $S_1, S_2 \subseteq C_n$, respectively, are equivalent
- \Rightarrow Matching processors have similar behaviors
Theorem 146. Every synchronous time-bounded LE algorithm A sends $\Omega(n \log n)$ messages on some ring R of size $n = 2^\ell \geq 8$.
Time-bounded LE Lower Bound (III)

Theorem 146. *Every synchronous time-bounded LE algorithm* \(A \) *sends* \(\Omega(n \log n) \) *messages on some ring* \(R \) *of size* \(n = 2^\ell \geq 8 \).*

Proof. We cannot directly apply comparison-based lower bound theorem, since previous lemma holds for specific set \(C_n = \{c_0, c_1, \ldots, c_{n^2+2n-1}\} \) only.

We construct modified algorithm \(A' \) from \(A \), which has

- *id’s in* \(S = \{0, 1, \ldots, n^2 + 2n - 1\} \)

- \(p_i \) with \(id_i = i \) executes algorithm \(A \) as if it had \(id_i = c_i \)

\(\Rightarrow \) \(A' \) is \(r(n) \)-comparison-based over \(S \) and terminates in \(r(n) \) rounds

The \(\Omega(n \log n) \) lower bounds follows from

- the comparison-based lower bound theorem, since

- \(A' \) and \(A \) send same number of messages by construction
Mutual Exclusion in Shared Memory
Shared Memory Systems

We consider asynchronous systems made up of

- n processors p_0, \ldots, p_{n-1}
- m shared memory variables (registers) R_0, \ldots, R_{m-1}

Distinguish shared memory variables by:

- **Type:** Which atomic operations supported?
 - Test-and-set
 - Read-modify-write
 - Compare-and-swap

- **Access:** Who may simultaneously access?
 - Multiple writer, multiple reader
 - [Single writer, multiple reader]
Formal Model of SHM systems (I)

Processor p_i again modeled as (deterministic) state machine $P_i = (Q_i, \Phi_i, I_i, T_i)$

- state set Q_i (possibly infinite)
- set of initial states $I_i \subseteq Q_i$
- set of terminal states $T_i \subseteq Q_i$
- transition function $\Phi_i \subseteq Q_i \times Q_i$ (successor relation)

Transition $(q_i, q'_i) \in \Phi_i$, triggered by event ϕ_i

- only when p_i is in state q_i (enabling condition for step (q_i, ϕ_i, q'_i))
- modifies at most one SHM register R_k
- moves p_i to state q'_i
Formal Model of SHM systems (II)

State set $Q_i = L_i \cup S_i$ consists of
- local state L_i (variables, register file of processor)
- locally accessible portion S_i of shared state
Formal Model of SHM systems (II)

State set $Q_i = L_i \cup S_i$ consists of

- local state L_i (variables, register file of processor)
- locally accessible portion S_i of shared state

The only events ϕ_i in the SHM model are computing events $\text{comp}(i)$, which trigger a step (q_i, ϕ_i, q'_i) of p_i (atomically executed, in zero time) consisting of:

1. choosing a single shared variable $R_k \in S_i$, depending on p_i’s current local state l_i in q_i
2. performing the SHM operation on R_k, according to its type
3. changing p_i’s local state to l'_i, depending on l_i and the result of the SHM operation
A configuration \(C = (l_0, \ldots, l_{n-1}; r_0, \ldots, r_{m-1}) \) of the global state machine consist of

- every processor \(p_i \)'s local state \(l_i \in L_i \)
- the actual content \(r_k \) of every SHM register \(R_k \), abbreviated as \(\text{mem}(C) = (r_0, \ldots, r_{m-1}) \)

A configuration \(C \) is similar to \(C' \) w.r.t. a set \(P \) of processors, denoted by \(C \overset{P}{\sim} C' \), if

- every \(p_i \in P \) has same local state in \(C \) and \(C' \)
- \(\text{mem}(C) = \text{mem}(C') \)

No \(p_i \in P \) sees any difference between \(C \) and \(C' \)
Formal Model of SHM systems (IV)

- **Execution segment** \(\alpha \) is finite sequence of configurations alternating with events
- **Schedule** \(\sigma \) of \(\alpha \) is corresponding sequence of events
- **\(P \)-only** schedule \(\sigma \) solely from subset \(P \) of processors
- Configuration \(C \) and schedule \(\sigma = \phi_i \ldots \phi_I \) uniquely determine execution segment, ending up in config \(C' = \sigma(C) = \phi_I(\phi_{I-1}(\ldots \phi_1(C) \ldots)) \)
- Configuration \(C' \) is **reachable** from \(C \) if some schedule \(\sigma \) exists such that \(C' = \sigma(C) \)

Processors in terminal states
- move to (same or other) terminal state only,
- do not modify any SHM variable
Formal Model of SHM systems (V)

Asynchronous systems:
- Computing steps are atomic, executed in zero time
- Time between successive steps of any processor is finite, but
- No upper and lower bounds on the time between local computing steps

Admissible executions:
- Every p_i executes infinitely many steps
- Note: Exception for Mutual Exclusion Problem for convenience
Pseudo-Code Conventions (I)

1. $Want := Want + 1$
2. $Priority := Priority + Want + pri$
3. $num := \max\{Number[0], \ldots, Number[n-1]\}$
4. wait until $Want = 0$

In our pseudo-code descriptions,

- SHM variable names start with upper-case character
- Single statement could involve multiple computing steps [depending on SHM type]:

<table>
<thead>
<tr>
<th>SHM type</th>
<th>line 1</th>
<th>line 2</th>
<th>line 3</th>
<th>line 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W</td>
<td>2</td>
<td>3</td>
<td>n</td>
<td>K</td>
</tr>
<tr>
<td>RMW (atomic add)</td>
<td>1</td>
<td>2</td>
<td>n</td>
<td>K</td>
</tr>
</tbody>
</table>
Pseudo-Code Conventions (II)

1. \(Want := Want + 1 \)
2. \(Priority := Priority + Want + pri \)
3. \(num := \max\{Number[0], \ldots, Number[n - 1]\} \)
4. wait until \(Want = 0 \)

The processor \(p \) executing this pseudo-code is said to
- have reached line 2 \(\iff \) \(p \) has already executed line 1 but not line 2
- be within lines 2–4 \(\iff \) \(p \) has already executed line 2 or 3 but not line 4
Goals of Formal Analysis

Correctness of distributed SHM algorithms:
- Safety properties
- Liveness properties

Performance analysis:
- SHM space complexity, measured in
 - memory bits
 - number of variables
- Time complexity, measured as
 - execution time if maximum inter-step time at any processor is $\tau = 1$
 - somewhat simplistic due to possibly contention-dependent SHM access times
Time Complexity Analysis

For time complexity analysis,

- starting the execution of a code segment of k steps at time t completes by time $t + (k - 1)\tau = t + (k - 1)$
- next step $k + 1$ occurs by time $t + k$
- detailed step counting usually avoided via $O(.)$:

1. $Want := 0$
2. $Priority := Priority + pri$
3. $num := \max\{Number[0], \ldots, Number[n - 1]\}$
4. wait until $Want = 0$

has time complexity $O(1) + O(n) + O(K) = O(n + K)$, where K is a bound on the number of iterations in line 4.
Mutual Exclusion Problem (I)

General setting:

- Distributed application, consisting of multiple client processes

- Client processes
 - alternate between remainder sections (RS) and critical sections (CS) in their code
 - invoke an underlying distributed mutual exclusion algorithm (ME) to ensure at most one client process in the CS at any time

- Modular design: Client implementation independent of ME implementation
Mutual Exclusion Problem (II)

ME top interface:

- **ME input events:** Signals client process at p_i wants to
 - enter CS ($\overline{\phi_i^{\text{enterCS}}}$)
 - enter RS ($\overline{\phi_i^{\text{enterRS}}}$)

- **ME output events:** Grants client process i to
 - exit RS (= go into CS) ($\overline{\phi_i^{\text{exitRS}}}$)
 - exit CS (= go into RS) ($\overline{\phi_i^{\text{exitCS}}}$)

Client processes only know semantics of ME top interface
Mutual Exclusion Problem (III)

ME bottom interface:

- Provides the ME process at p_i with some means of communication with the ME processes at other processors p_j:
 - Our case: Formal SHM model
 - Alternative: Message-passing implementation
 - Bottom events $send_i(M, j)$ and $recv_i(M, j)$ (emulate standard message-passing communication via $outbuf_i[j]$ and $inbuf_i[j]$)
 - Bottom events $bc-send_i(M)$ and $bc-recv_i(M, j)$ (reliable broadcast simulation, implemented by ME bottom process)

Implementation complexity of the ME algorithm obviously depends on bottom interface
Trace-based ME Specification

Recall trace-based specifications:

- Define set of feasible traces \mathcal{E}_{ME} of the events at the top interfaces of all ME processes

- Note: Also depends on client requests
Trace-based ME Specification

Recall trace-based specifications:

- Define set of feasible traces \(\mathcal{E}_{ME} \) of the events at the top interfaces of all ME processes
- Note: Also depends on client requests

Every trace \(\beta \in \mathcal{E}_{ME} \) must satisfy:

- Events at processor \(p_i \), denoted \(p_i \)’s view \(\beta|_i \), must occur cyclic: \(\beta|_i = \{ \overline{\text{enterCS}}_i \overline{\text{exitRS}}_i \overline{\text{enterRS}}_i \overline{\text{exitCS}}_i \}^* \)

- \(\overline{\phi_i} \overline{\text{exitRS}}_i \overline{\text{exitRS}}_j \) must have \(\overline{\phi_i} \overline{\text{exitCS}}_i \) in between

- Additional liveness requirements, like no deadlock or no lockout
Assertion-based ME Specification (I)

ME code thus divided into 4 “sections”, in endless loop:

- **Entry** section: Establish ME
- **Critical** section: Wait for the client to complete exclusive work, without
 - staying indefinitely here
 - touching ME-relevant SHM registers
- Simplifying assumption: CS is empty (no “own” step).
- **Exit** section: Clean up ME
- **Remainder** section: Wait for the client to complete non-exclusive work. We assume:
 - Remainder section is also empty, but
 - execution may forever stop after last step in exit even in admissible executions
Assertion-based ME Specification (II)

Mutual exclusion algorithms only provide code for entry and exit sections, guaranteeing:

- **Mutual exclusion** (safety): In every configuration of every admissible execution, at most one processor is in the critical section

- **One of the following liveness properties:**
 - **No deadlock:** If p_i is within the entry section at some time, then later some p_j is within the critical section
 - **No lockout:** If p_i is within the entry section at some time, then later this p_i is within the critical section
 - **k-bounded waiting:** No deadlock + while p_i is within the entry section, no other processor enters the CS $> k$ times
A Note on k-bounded Waiting

Observe that

- 0-bounded waiting = FIFO ordering
- But: The previous definition of k-bounded waiting refers to the order of events, not to event occurrence times!
- No difference if entry section is entered at different times
- If p_j enters the entry section at the same time t as p_i enters CS, any event order is potentially possible (without further information)!

\Rightarrow One should conservatively assume that p_i already overtakes p_j at time t for the first time!
Overview of Upcoming Results

Powerful SHM register types:
- ME algorithm based on test-and-set
- ME algorithm based on read-modify-write
- Lower bound on required number of memory bits

Simple read/write SHM Registers:
- Lamport’s bakery ME algorithm (unbounded range)
- A two-processor ME algorithm (bounded range)
- Lower bound on required number of registers

Restrict attention to multiple writer+reader variables
Test-And-Set Variables

A binary test-and-set variable V can be accessed via two operations:

- $TAS(V)$ applied to address V returns a binary value:

 $$\begin{align*}
 temp &:= V \\
 V &:= 1 \\
 return(temp)
 \end{align*}$$

 executed atomically

- $RESET(V)$ applied to address V does $V := 0$

Atomicity important to

- avoid race conditions
- prevent two processors both getting 0 from simultaneous $TAS(V)$
ME Algorithm with Test-And-Set (I)

Code TAS algorithm 7:
- Entry: wait until $TAS(V) = 0$
- Exit: $RESET(V)$

Theorem 167. The TAS algorithm 7 guarantees mutual exclusion and no deadlock of n processors with a single test-and-set variable
ME Algorithm with Test-And-Set (I)

Code TAS algorithm 7:

- **Entry:** wait until \(\text{TAS}(V) = 0 \)
- **Exit:** \(\text{RESET}(V) \)

Theorem 167. The TAS algorithm 7 guarantees mutual exclusion and no deadlock of \(n \) processors with a single test-and-set variable

Proof. Mutual exclusion is proved by induction on the number \(k \geq 0 \) of entries of the CS (by any process):

- **Induction basis** \(k = 0 \): Since no process entered the CS, mutual exclusion trivially holds.
- **Induction step:** Assume that ME held for the first \(k - 1 \geq 0 \) entries in CS.
 - Assume that ME is violated when the \(k \)-th process enters CS.
 - Derive a contradiction.
ME Algorithm with Test-And-Set (II)

Proof. (cont.)

Let t_j be the time when ME is violated upon the k-th entry, i.e., some processor p_j enters the CS although p_i is still in. Thus,

- V has been set at time t_i by p_i
- no other processor has entered and hence left the CS in $[t_i, t_j]$ since p_j entry is first one where ME is violated (induction hypothesis!)
- use simple property: V can change only upon entry or exit CS

\Rightarrow V must still be 1 at time t_j, so p_j cannot have read $V = 0$ on entering the CS
Proof. (cont.)

Let t_j be the time when ME is violated upon the k-th entry, i.e., some processor p_j enters the CS although p_i is still in. Thus,

- V has been set at time t_i by p_i
- no other processor has entered and hence left the CS in $[t_i, t_j]$ since p_j entry is first one where ME is violated (induction hypothesis!)
- use simple property: V can change only upon entry or exit CS

$\Rightarrow V$ must still be 1 at time t_j, so p_j cannot have read $V = 0$ on entering the CS

Proceed with proof of no deadlock (by contradiction) . . .

□
ME Algorithm with Test-And-Set (III)

Proof. (Cont.)

Assume p_j is within entry section at t_j but no processor enters CS at time $t > t_j$. However,

- no processor may remain in CS forever \Rightarrow there is a time t' where the processor in CS at t_j, if any, has left CS and exit section
- Invariant (left to reader): $V = 0 \iff$ no processor is in CS

Hence, at some time $t \geq t'$, some processor within entry at time t must discover $V = 0$ and enter CS.

Hence, the TAS algorithm

- guarantees no deadlock (but NOT no lockout)
- needs just 1 bit of memory (for holding 2 states)

\[\square \]
Read-Modify-Write Variables

Generic operation $RMW(V, f)$:

\[
\begin{align*}
\text{temp} & := V \\
V & := f(\text{temp}) \\
\text{return}(\text{temp})
\end{align*}
\]

executed atomically

A read-modify-write variable V thus allows to atomically

- read V’s value v
- compute a new value v' using a type-dependent function $v' = f(v)$, like:
 - Test-and-set: $f(v) \equiv 1$
 - Compare-and-swap: Input parameters w, w'
 \[
 f(v, w, w') := \text{if } v = w \text{ then } w' \text{ else } v
 \]
- update V’s value to v' accordingly
Basic data structure is “virtual” circular queue of length n:

- Processors waiting in entry section entered in queue
- Processors remember their position in the queue (“ticket”) in local variable

Shared variable V keeps track of active part of queue via $V.first$ and $V.last$ pointers $\in \{0, \ldots, n - 1\}$

- **Entry code:**
 - Increment $V.last$ modulo n to enqueue self
 - Wait until $V.first$ equals this value

- **Exit code:** Increment $V.first$ modulo n to dequeue itself
Pseudo-Code RMW ME Algorithm 8

Code for every processor:
1. Initially $V = \langle 0, 0 \rangle$

/* Code for entry section: */
2. $pos := \text{RMW}(V, \langle V.\text{first}, V.\text{last} + 1 \rangle)$ // enqueueing at tail
3. repeat // Per iteration: Lines 4 and 5 in a single step!
4. $queue := \text{RMW}(V, V)$ // read head of queue
5. until $queue.\text{first} = pos.\text{last}$ // until becomes first

/* Critical section */

/* Code for exit section */
6. $\text{RMW}(V, \langle V.\text{first} + 1, V.\text{last} \rangle)$ // advance head of queue
Detailed proof of safety and liveness of Algorithm 8 is complicated by the modulo-operations involved in RMW.

We first consider a variant of Algorithm 8, where the buffer (and the size of the RMW variable) is unbounded:

- Algorithm 8’ has same pseudo-code as Algorithm 8, but
- RMW increments $V\.first$ and $V\.last$ not modulo n

Proof outline:

- Prove that Algorithm 8’ solves ME with 0-bounded waiting (= FIFO) and no deadlock
- Carry over these properties to Algorithm 8 using a simulation relation
We say that a processor is

- within the critical ∪ exit section, if it has passed line 5 but not executed line 6,
- within the entry ∪ critical ∪ exit section, if it has executed line 2 but not line 6

By the semantics of RMW and the code of Algorithm 8’, we immediately obtain the following simple properties:

- Both \(V.\text{first} \) and \(V.\text{last} \) is advanced in strict sequence \(\{0, 1, 2, 3, \ldots \} \)
- Processors draw unique tickets \(pos_i.\text{last} \) in line 2, in strict sequence \(\{0, 1, 2, 3, \ldots \} \)

We proceed with some invariants . . .
Lemma 175. In every reachable configuration of Algorithm 8’, there is at most one process p_i within critical \cup exit section, and its ticket satisfies $pos_i.last = V.first$.

Proof. By induction; left as an exercise.
Lemma 175. In every reachable configuration of Algorithm 8’, there is at most one process p_i within critical \cup exit section, and its ticket satisfies $pos_i.last = V.first$.

Proof. By induction; left as an exercise. □

Theorem 175. Algorithm 8’ guarantees mutual exclusion.
Lemma 175. In every reachable configuration of Algorithm 8’, there is at most one process p_i within critical \cup exit section, and its ticket satisfies $pos_i.last = V.first$.

Proof. By induction; left as an exercise.

Theorem 175. Algorithm 8’ guarantees mutual exclusion.

Proof. Follows immediately from the above invariant.
Lemma 176. In every reachable configuration of Algorithm 8’, every processor p_i that is within the entry \cup critical \cup exit section has drawn (and not returned) a unique ticket pos_i.last in the interval $[V.\text{first}, V.\text{last})$, and $V.\text{last} - V.\text{first}$ equals the number d of processors that have drawn (and not returned) a ticket.

Proof. By induction; left as an exercise.
Lemma 176. In every reachable configuration of Algorithm 8’ , every processor p_i that is within the entry $∪$ critical $∪$ exit section has drawn (and not returned) a unique ticket $pos_{i . \text{last}}$ in the interval $[V.\text{first}, V.\text{last})$, and $V.\text{last} - V.\text{first}$ equals the number d of processors that have drawn (and not returned) a ticket.

Proof. By induction; left as an exercise.

Theorem 176. Algorithm 8’ guarantees 0-bound ed waiting (= FIFO) and no deadlock.
Lemma 176. In every reachable configuration of Algorithm 8', every processor p_i that is within the entry \cup critical \cup exit section has drawn (and not returned) a unique ticket $pos_i \cdot \text{last}$ in the interval $[V.\text{first}, V.\text{last})$, and $V.\text{last} - V.\text{first}$ equals the number d of processors that have drawn (and not returned) a ticket.

Proof. By induction; left as an exercise. \square

Theorem 176. Algorithm 8' guarantees 0-bounded waiting (= FIFO) and no deadlock.

Proof. First, it follows from the above invariant that in case p_i has drawn a ticket $pos_i \cdot \text{last}$

$$V.\text{first} \leq pos_i \cdot \text{last} < V.\text{last} = V.\text{first} + d \leq V.\text{first} + n$$

since $1 \leq d \leq n$ processors can have drawn a ticket. \square
Analysis RMW ME Algorithm 8’ (IV)

Proof. (cont.)

Assume for a contradiction that no deadlock does not hold:

- Let t be the first time when there are $d > 0$ processors that have drawn a ticket (without entering CS yet), but no processor enters the CS after t.

- Let p_i be the processor with the smallest ticket among the $d > 0$ ones.

- By the previous invariant, p_i must have the ticket $pos_i.last = V.first$.

 However, $pos_i.last = V.first$ is exactly the condition (line 5) that causes p_i to enter the CS — a contradiction.

And since processors enter the CS in the order of drawn tickets, this also implies 0-bounded waiting.

This completes the correctness proof of Algorithm 8’.
Simulation Relation (I)

Given two distributed algorithms (state-machines) \mathcal{L} and \mathcal{H} solving the same problem \mathcal{P}

- $\mathcal{H} = (C_\mathcal{H}, \Phi_\mathcal{H}, \mathcal{I}_\mathcal{H}, \mathcal{T}_\mathcal{H})$, the higher abstraction level (Algorithm 8’)
- $\mathcal{L} = (C_\mathcal{L}, \Phi_\mathcal{L}, \mathcal{I}_\mathcal{L}, \mathcal{T}_\mathcal{L})$, the lower abstraction level (Algorithm 8)

Generated traces (recall augmented events):

- $E_\mathcal{H} = \{ \beta | \beta = E(\alpha) \text{ where } \alpha \text{ is execution segment of } \mathcal{H} \}$
- $E_\mathcal{L} = \{ \beta | \beta = E(\alpha) \text{ where } \alpha \text{ is execution segment of } \mathcal{L} \}$

Map (finite) execution segments/schedules of \mathcal{L} to (finite) executions segments/schedules of \mathcal{H}
Simulation Relation (II)

A binary relation \(f \subseteq C_L \times C_H \) is a simulation relation (also called abstraction function) if

- initial states of \(L \) are mapped to initial states of \(H \):
 \[\forall C_L^0 \in \mathcal{I}_L : f(C_L^0) \cap \mathcal{I}_H \neq \emptyset, \text{ with } u \in f(s) \iff (s, u) \in f \]

- state transitions of \(L \) are mapped to execution segments of \(H \):
 - For all reachable states \(C_L \in C_L, C_H \in C_H \) with \(C_H \in f(C_L) \), and
 - transition \((C_L, \phi_L, C_L') \in \Phi_L \)

there is some

- finite schedule \(\sigma_H = \phi_H^1, \ldots, \phi_H^k, k \geq 0 \), with \(C_H' = \sigma_H(C_H) \in f(C_L') \), such that

- the traces \(\mathcal{E}(\phi_L) = \mathcal{E}(\sigma_H) \) are the same
Theorem 180. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then the subsets of finite event traces $\mathcal{E}_\mathcal{L}^* \subseteq \mathcal{E}_\mathcal{L}$, $\mathcal{E}_\mathcal{H}^* \subseteq \mathcal{E}_\mathcal{H}$ satisfy $\mathcal{E}_\mathcal{L}^* \subseteq \mathcal{E}_\mathcal{H}^*$.
Theorem 180. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then the subsets of finite event traces $\mathcal{E}_L^* \subseteq \mathcal{E}_L$, $\mathcal{E}_H^* \subseteq \mathcal{E}_H$ satisfy $\mathcal{E}_L^* \subseteq \mathcal{E}_H^*$.

Proof. Using induction on the number of events in any finite schedule σ_L of \mathcal{L}, a finite schedule σ_H of \mathcal{H} with $\mathcal{E}(\sigma_L) = \mathcal{E}(\sigma_H)$ can be constructed via f. Hence, $\mathcal{E}_L^* \subseteq \mathcal{E}_H^*$.

□
Theorem 180. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then the subsets of finite event traces $\mathcal{E}_\mathcal{L}^* \subseteq \mathcal{E}_\mathcal{L}$, $\mathcal{E}_\mathcal{H}^* \subseteq \mathcal{E}_\mathcal{H}$ satisfy $\mathcal{E}_\mathcal{L}^* \subseteq \mathcal{E}_\mathcal{H}^*$.

Proof. Using induction on the number of events in any finite schedule $\sigma_\mathcal{L}$ of \mathcal{L}, a finite schedule $\sigma_\mathcal{H}$ of \mathcal{H} with $\mathcal{E}(\sigma_\mathcal{L}) = \mathcal{E}(\sigma_\mathcal{H})$ can be constructed via f. Hence, $\mathcal{E}_\mathcal{L}^* \subseteq \mathcal{E}_\mathcal{H}^*$.

Theorem 180. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then every safety property satisfied by \mathcal{H} is also satisfied by \mathcal{L}.

Simulation Relation (III)

Theorem 180. If there is a simulation relation f from L to H, then the subsets of finite event traces $E_L^* \subseteq E_L$, $E_H^* \subseteq E_H$ satisfy $E_L^* \subseteq E_H^*$.

Proof. Using induction on the number of events in any finite schedule σ_L of L, a finite schedule σ_H of H with $E(\sigma_L) = E(\sigma_H)$ can be constructed via f. Hence, $E_L^* \subseteq E_H^*$. \hfill \Box

Theorem 180. If there is a simulation relation f from L to H, then every safety property satisfied by H is also satisfied by L.

Proof. Let P be a safety property satisfied by H, i.e., $E_H \subseteq P$. By prefix closure of P and the above theorem, $E_L^* \subseteq E_H^* \subseteq P$.

Consider any (not necessarily admissible) infinite schedule σ_L. Let σ_L^k, $k \geq 1$, be its prefix of length k, and σ_H^k be the corresponding schedule of H guaranteed by f. Since P is limit-closed, the (not necessarily admissible) limit $\sigma_H = \lim_{k \to \infty} \sigma_H^k$ must be in P. Since $\lim_{k \to \infty} \sigma_L^k = \sigma_L$, it follows that $E(\sigma_L) = E(\sigma_H) \in P$ as well. \hfill \Box
Simulation Relation (IV)

What about liveness properties?

- Constructing simulated execution α_H is entirely dictated by α_L

- f does not necessarily lead to admissible α_H, as certain transitions needed for admissibility may not be not taken

Important special case: 1:1 relation between state transitions of \mathcal{L} and \mathcal{H}:

- Simplifies simulation proof: We only need to check whether executing the same event $\phi_H = \phi_L$ (i.e., same line in pseudo-code!) preserves f

- Preserves liveness properties, as simulated execution α_H is admissible if α_L is.
Analysis RMW ME Algorithm 8 (I)

Theorem 182. Algorithm 8 guarantees mutual exclusion with 0-bounded waiting and no deadlock using a single RMW variable with $2\lceil \log_2 n \rceil$ bits.
Theorem 182. Algorithm 8 guarantees mutual exclusion with 0-bounded waiting and no deadlock using a single RMW variable with $2\lceil \log_2 n \rceil$ bits.

Proof. We choose \mathcal{L} as Algorithm 8 and \mathcal{H} as Algorithm 8' and consider all events as external events.

For defining f, we just let $(C_{\mathcal{L}}, C_{\mathcal{H}}) \in f$ iff

- $C_{\mathcal{L}}.V.first \equiv C_{\mathcal{H}}.V.first \mod n$
- $C_{\mathcal{L}}.V.last \equiv C_{\mathcal{H}}.V.last \mod n$
- $\forall i : C_{\mathcal{L}}.pos_i.last \equiv C_{\mathcal{H}}.pos_i.last \mod n$

We will show that f is a simulation relation, by showing that $C_{\mathcal{H}} \in f(C_{\mathcal{L}})$ implies $C'_{\mathcal{H}} \in f(C'_{\mathcal{L}})$ for every state transition.
Proof. (cont.) f is indeed a simulation relation, since

- the unique initial state $C'_L = C'_H$ is also an initial state for $H \Rightarrow$ the initial state mapping requirement is trivially fulfilled
- $C'_H \in f(C'_L)$ when H executes the same event (= line number) as L

Since $C_H \in f(C_L)$ holds by assumption, all state transitions involving only operations “invariant” w.r.t. $\mod n$ (e.g., V and pos_i copied or incremented) obviously maintain $C'_H \in f(C'_L)$.

Only the equality check in line 5 could cause a problem:

- Suppose $C_L.V.first = C_L.pos_i.last$, then Algorithm 8 would enter the CS after (C_L, ϕ_L, C'_L).
- We must show that Algorithm 8’ does the same, i.e., that also $C_H.V.first = C_H.pos_i.last$ in this case.
Analysis RMW ME Algorithm 8 (III)

Proof. (cont.) However, since

- \(C_H.V.first \equiv C_H.pos_i.last \mod n \) (which follows from \(C_L.V.first = C_L.pos_i.last \) and the definition of \(f \))

- \(C_H.V.first \leq C_H.pos_i.last < C_H.V.first + n \) (from the second invariant of Algorithm 8’)

\(C_H.V.first = C_H.pos_i.last \) must indeed hold.

Hence, \(f \) is a simulation relation. Consequently, Algorithm 8

- satisfies all safety properties of Algorithm 8’
- even satisfies all liveness properties of Algorithm 8’, since \(f \) establishes a 1-1 correspondence between admissible executions

In Algorithm 8, \(V.first \) and \(V.last \) take on at most \(n \) values, hence \(V \)

- needs \(n^2 \) different SHM states and hence \(2 \lceil \log_2 n \rceil \) bits
Theorem 185. Any algorithm that solves mutual exclusion with \(k \)-bounded waiting, for some \(k \), uses at least \(n \) distinct shared memory states.
Theorem 185. *Any algorithm that solves mutual exclusion with \(k \)-bounded waiting, for some \(k \), uses at least \(n \) distinct shared memory states.*

Proof. Start from initial configuration \(C \) (all \(p_i \) in remainder)

- \(\exists \) infinite \(p_0 \)-only schedule \(\tau_0' \) such that \(\text{exec}(C, \tau_0') \) is admissible

\[\Rightarrow \] By no deadlock: \(\exists \) prefix \(\tau_0 \) such that \(p_0 \) is in the CS in \(C_0 = \tau_0(C) \)

Inductively, let

- \(\tau_i \) be \(p_i \)-only schedule that drives \(p_i \) into the entry section when starting from \(C_{i-1} \)

\[\Rightarrow \] \(p_0 \) is in CS and \(\{p_1, \ldots, p_i\} \) are within entry section in configuration \(C_i, 0 \leq i \leq n - 1 \)

\(\square \)
Assume, by way of contradiction, that there are less than n distinct SHM states. Then, there is some $i < j$ with $C_i \{p_0, \ldots, p_i\} \sim C_j$ since

- there must be $i < j$ such that $\text{mem}(C_i) = \text{mem}(C_j)$
- $C_j = \tau(C_i)$ where $\{p_0, \ldots, p_i\}$ do not take steps in $\tau = \tau_{i+1} \cdots \tau_j$ by construction

Apply an infinite $\{p_0, \ldots, p_i\}$-only schedule to C_i that leads to an admissible execution. By no deadlock,

- some processor $p_\ell \in \{p_0, \ldots, p_i\}$ must enter CS \propto often
- there is some prefix ρ of ρ' such that p_ℓ enters CS $k + 1$ times
Proof. (cont.)

Since $C_i \sim \{p_0, \ldots, p_i\} C_j$, it follows that:

- Applying ρ to C_j produces same execution for $p_\ell \Rightarrow p_\ell$ enters CS $k + 1$ times also when starting from C_j, despite p_j waiting in entry

- Caveat: Resulting execution not admissible since p_{i+1}, \ldots, p_j do not take steps

- However, appending schedule σ where every $\{p_0, \ldots, p_j\}$ takes infinitely many steps provides admissible execution, where p_j waiting in entry section has been overtaken $k + 1$ times, a contradiction.

\[\Box \]
Mutual Exclusion with R/W Registers

Lamport’s Bakery Algorithm:
- Customers arriving in a bakery
- Get successively numbered tickets on entry
- Only customer with the smallest ticket is actually served

SHM variables used in pseudo code:
- $Number[i]$ holds p_i’s ticket (0 if none assigned)
- $Choosing[i]$ is true if p_i is about to get its ticket
- Use additional processor id i for creating unique tickets ($Number[i], i$)

Note: $Number[i]$ could grow without bound
Pseude-Code Algorithm 10

Bakery algorithm: Code for processor p_i, $0 \leq i \leq n - 1$

1. $\text{VAR } Choosing[\forall j] := \text{false}; Number[\forall j] := 0$

/* Code for entry section: */

2. $Choosing[i] := \text{true}$
3. $Number[i] := \max \{Number[0], \ldots, Number[n - 1]\} + 1$
4. $Choosing[i] := \text{false}$
5. for $j = 0$ to $n - 1$ (except $j = i$) do
6. wait until $Choosing[j] = \text{false}$ // About to get ticket ?
7. wait until $Number[j] = 0$
 or $(Number[j], j) > (Number[i], i)$

/* Critical section */

/* Code for exit section */

8. $Number[i] := 0$ // Throw away used ticket
Lemma 190. In every configuration C of an execution α of Algorithm 10, if p_i is in the CS and $\text{Number}[j] \neq 0$ for any $j \neq i$, then p_j has a larger ticket than p_i, that is, $(\text{Number}[j], j) > (\text{Number}[i], i)$.

Proof. Typical homework assignment, using invariant induction.

Hence: Only process with smallest ticket can enter CS!
Lemma 190. In every configuration C of an execution α of Algorithm 10, if p_i is in the CS and $\text{Number}[j] \neq 0$ for any $j \neq i$, then p_j has a larger ticket than p_i, that is, $(\text{Number}[j], j) > (\text{Number}[i], i)$.

Proof. Typical homework assignment, using invariant induction. \(\square\)

Hence: Only process with smallest ticket can enter CS!

Theorem 190. Algorithm 10 provides mutual exclusion and $n - 1$-bounded waiting.

Proof. Mutual exclusion: Assume, by way of contradiction, that both p_i and p_j are in CS. It is easy to show that $\text{Number}[k] > 0$ if p_k is in CS. Applying the previous lemma twice hence yields a contradiction, since $(\text{Number}[j], j) > (\text{Number}[i], i)$ and $(\text{Number}[i], i) > (\text{Number}[j], j)$.

Proof $n - 1$-bounded waiting: Typical homework assignment. \(\square\)
ME with Bounded R/W Variables

Consider a ME algorithm for 2 processors \(p_0 \) and \(p_1 \) only:

- \(p_i \) uses SHM variable \(\text{Want}[i] \) to signal interest to enter CS
- In case of both \(\text{Want}[0] = \text{true} \) and \(\text{Want}[1] = \text{true} \), one processor retreats
- Additional SHM variable \(\text{Priority} \) says who has (not) to retreat [simply remembers last CS exit]

Note: Textbook starts with unsymmetric algorithm where

- \(p_1 \) has to retreat always

\[\Rightarrow \text{Can only guarantee no deadlock} \]
2 processor ME: Code for processor p_i, $i \in \{0, 1\}$

1. VAR $Want[\forall j] := \text{false}$; $Priority := 0$

/* Code for entry section: */

2. $Want[i] := \text{false}$
3. wait until $Want[1 - i] = \text{false}$ or $Priority = i$
4. $Want[i] := \text{true}$ // declare interest
5. if $Priority = 1 - i$ then
6. if $Want[1 - i] = \text{true}$ then goto line 2 // retreat
7. else
8. wait until $Want[1 - i] = \text{false}$ // wait for exit
/* Critical section */
/* Code for exit section */

9. $Priority := 1 - i$ // turn to other processor
10. $Want[i] := \text{false}$
Lemma 193. In Algorithm 12, if processor p_i loops in line 3 (resp. loops in line 8 or reaches the CS), then $\text{Want}[i] := \text{false}$ (resp. $\text{Want}[i] := \text{true}$).

Proof. Obvious from the code. □
Correctness Algorithm 12 (I)

Lemma 193. In Algorithm 12, if processor p_i loops in line 3 (resp. loops in line 8 or reaches the CS), then $\text{Want}[i] := \text{false}$ (resp. $\text{Want}[i] := \text{true}$).

Proof. Obvious from the code.

Theorem 193. Algorithm 12 provides mutual exclusion.
Correctness Algorithm 12 (I)

Lemma 193. In Algorithm 12, if processor p_i loops in line 3 (resp. loops in line 8 or reaches the CS), then $\text{Want}[i] := \text{false}$ (resp. $\text{Want}[i] := \text{true}$).

Proof. Obvious from the code. \qed

Theorem 193. Algorithm 12 provides mutual exclusion.

Proof. Assume, by way of contradiction, that both p_0 and p_1 are in CS at some time t. By the previous lemma, both $\text{Want}[0] = \text{true}$ and $\text{Want}[1] = \text{true}$ at t.

Assume w.l.o.g. that, when entering CS,

- p_1’s last write $\text{Want}[1] := \text{true}$ happens before
- p_0’s last write $\text{Want}[0] := \text{true}$

From the code, p_0 can enter CS via line 6 or line 8, where it must read $\text{Want}[1] = \text{false}$ in both cases – a contradiction. \qed
Correctness Algorithm 12 (II)

Theorem 194. *Algorithm 12 provides no deadlock.*
Theorem 194. Algorithm 12 provides no deadlock.

Proof. Assume that both \(p_0 \) and \(p_1 \) get stuck in the entry section, with w.l.o.g. \(p_1 \) being the last process that enters. Let \(P \) be the value of \(Priority \) at this time; note that this variable does not change any more.

If \(P = 0 \), then
- \(p_1 \) never reaches line 8, hence must loop forever within lines 2–6
- \(p_0 \) must eventually reach and loop forever in line 8 \(\Rightarrow \)
 \(Want[0] = \text{true} \) by previous lemma
- \(p_1 \) must hence eventually reach and loop forever in line 3 \(\Rightarrow \)
 \(Want[1] = \text{false} \) by previous lemma

\(\Rightarrow \) \(p_0 \) cannot loop forever in line 8, a contradiction.

\(\square \)
Proof. (cont.)

If $P = 1$, then
- p_0 was the last to execute line 9 in the exit section
- already $Priority = 1$ at the time p_0 entered the entry section
- same argument as above, with p_0 and p_1 reversed, yields contradiction.

If just one processor, say, p_0, gets stuck in the entry section without the other process entering CS subsequently,
- p_1 must eventually leave CS and stay forever in remainder section
\Rightarrow $Want[1] = false$ forever, so p_0 cannot loop forever due to lines 3, 6 and 8. Hence, it must enter CS.
Correctness Algorithm 12 (IV)

Theorem 196. *Algorithm 12 provides no lockout.*
Correctness Algorithm 12 (IV)

Theorem 196. Algorithm 12 provides no lockout.

Proof. Assume, by way of contradiction, that w.l.o.g. p_0 is starved and thus gets stuck in the entry section.

- If p_1 executes line 9 where it sets $Priority := 0$, it remains 0 forever, so
 - p_0 passes the test in line 3 and skips line 6
 - must forever loop in line 8, waiting for $Want[1] = false$
 \Rightarrow Could only happen if p_1 gets stuck in entry section as well, which would violate no deadlock

- If p_1 never executes line 9,
 - p_1 must remain forever in remainder section
 \Rightarrow $Want[1] = false$, so p_0 cannot loop forever due to lines 3, 6 and 8. Hence, it enters CS.
Processor ME with Bounded R/W Variables

Derive \(n \)-processor ME algorithm from 2-processor one

- Let processors compete pairwise, using \(\frac{n}{2} \) instances of 2-processor ME algorithms
- Do the same for the \(\frac{n}{2} \) “winners”, etc.

Corresponds to arranging processors as leaves of a tournament tree

- A process that got up \(k \) levels in the tree passed the entry section of \(k \) 2-processor ME algorithms
- Only one process can win at the root of the tree
 \[\Rightarrow \text{enters the “real” critical section} \]

Textbook shows: Algorithm 13 provides ME and no lockout
Required Number of R/W Registers

The algorithms seen so far need
- at least one SHM variable if powerful primitives like test-and-set are available
- \(O(n) \) R/W SHM variables

We will show now that any ME algorithm that guarantees no deadlock needs at least \(n \) R/W variables:
- Trivial if single-writer, since every process must write something to a dedicated variable to let others know
- Advanced lower bound proof for multiple writer variables
Preliminaries Lower Bound Proof

Some definitions:

- A processor **covers** a variable [at most one] in a configuration if it is about to write it [in the next event]

- For any set \(P \) of processors, a configuration \(C \) is **\(P \)-quiescent** if there exists a quiescent configuration \(D \), reachable from the initial config, such that \(C \sim^P D \).
Preliminaries Lower Bound Proof

Some definitions:

- A processor covers a variable [at most one] in a configuration if it is about to write it [in the next event]

- For any set P of processors, a configuration C is P-quiescent if there exists a quiescent configuration D, reachable from the initial config, such that $C \sim P D$.

Our lower bound proof will exploit the following:

- Every processor p_k must inform the others that it wants to enter the CS

- This must be done in a not-yet covered variable, since p_k’s writing to already covered variables could be overwritten [without the overwritten content being read!]
Lemma 200. Let C be a reachable p_i-quiescent configuration for some p_i. Then there is a p_i-only schedule σ such that p_i is in CS in $\sigma(C')$, and p_i writes to at least one variable uncovered in C' during σ.
Preparation Lemma (I)

Lemma 200. Let C be a reachable p_i-quiescent configuration for some p_i. Then there is a p_i-only schedule σ such that p_i is in CS in $\sigma(C)$, and p_i writes to at least one variable uncovered in C during σ.

Proof. Since C is p_i-quiescent, there is a quiescent configuration D with $C \overset{p_i}{\sim} D$. By no deadlock,

- if p_i alone takes steps starting from D, it must eventually enter CS
- the same must happen when this schedule σ is started from C

Assume, by way of contradiction, that p_i only writes to variables already covered in C. Let

- W be the set of variables covered by processors $\neq p_i$
- P be a set of processors covering every variable in W exactly once (recall that any p_j can cover at most one variable)
Preparation Lemma (II)

Proof. (cont.) Starting from C, let every processor in P take exactly one step \Rightarrow every variable in W is now overwritten then invoke no deadlock and unobstructed exit to show that every processor not in the remainder can get to it.

Call the resulting schedule τ and note that the reached configuration $Q = \tau(C)$ is quiescent. Pick any processor $p_j \neq p_i$ and let π be a p_j-only schedule starting from Q that moves p_j into CS.

During the first steps of τ, other processors overwrite anything somebody (like p_i during σ) may have written

\Rightarrow During τ and π, other processors cannot tell whether p_i has executed σ or not [although $\text{mem}(C) \neq \text{mem}(\sigma(C))$]!

Hence, p_j is in CS both in configuration $\tau\pi(C)$ and $\sigma\tau\pi(C)$ — but in the latter, p_i is also in CS, a contradiction. \qed
To show that one needs at least \(n \) variables,

- the preparation lemma cannot simply be used successively, for every processor:
 - using it e.g. for \(p_0 \) need not lead to a configuration that is \(P \)-quiescent for the remaining processors
 - cannot employ preparation lemma again for \(p_1 \)
To show that one needs at least n variables,

- the preparation lemma cannot simply be used successively, for every processor:
 - using it e.g. for p_0 need not lead to a configuration that is P-quiescent for the remaining processors
 - cannot employ preparation lemma again for p_1

But we can use the following lemma with $k = n$ and C equal to the initial configuration for proving our lower bound:

Lemma 202. For any $1 \leq k \leq n$, let $P_k = \{p_0, \ldots, p_{k-1}\}$ and $P^k = \{p_k, \ldots, p_{n-1}\}$. For all reachable quiescent configurations C, there is a P^k-quiescent configuration C_k reachable from C by a P_k-only schedule such that the processors in P_k cover k distinct variables in C_k.
Lower Bound Number of R/W Variables (II)

Proof. By induction. Basis is $k = 1$

- By preparation lemma, there is a p_0-only schedule σ' where at least one write to variable X is performed.

- Let $C_1 = \sigma(C')$ be the configuration reached by the prefix σ of all events in σ' up to but excluding the first write.

- C_1 covers X and is P^1-quiescent since only p_0 took steps and $\text{mem}(C_1) = \text{mem}(C')$, as required.

Induction step: Assume lemma holds for $k \geq 1$ and show it for $k + 1$. For purposes of simpler explanation,

- we silently assume that every application of induction hypothesis causes same set W_k of k covered variables to appear,

- will be removed subsequently, by using the fact that we can only have finite number of different sets of k covered variables.
Lower Bound Number of R/W Variables (III)

Proof. (cont.) By inductive hypothesis, we can reach some \(P^k \)-quiescent \(C_k \) where the processors in \(P_k \) cover \(W_k \). Starting from \(C_k \),

- apply the \(p_k \)-only schedule \(\sigma \) guaranteed by the preparation lemma to have additional variable \(X \) covered
- But: \(\sigma(C_k) \) not necessarily \(P^{k+1} \)-quiescent since \(p_k \) might also have written to some already covered variables

Need more work: Similar to the proof of preparation lemma,

- let every processor in \(P_k \) take exactly one step \(\Rightarrow \) every variable in \(W_k \) is now overwritten
- then invoke no deadlock and unobstructed exit to show that every processor in \(P_k \) not in the remainder can get to it

Call the latter schedule \(\tau \) and let \(D_k = \sigma \tau(C_k) = \tau(\sigma(C_k)) \)
Lower Bound Number of R/W Variables (IV)

Proof. (cont.) We cannot invoke the inductive hypothesis starting from D_k, however, since it is not quiescent (p_k not in remainder). Still,

- we could apply τ also to C_k, without applying σ first
- the configuration $D_k^* = \tau(C_k)$ is quiescent \Rightarrow we can apply inductive hypothesis
- by applying the hypothesized schedule σ_k to D_k^*, we can reach a P^k-quiescent configuration C_k^* where P_k covers W_k'

Since obviously $D_k^* \forall p_j \not= p_k D_k$,

- processors in P_k do the same in $\text{exec}(D_k, \sigma_k)$ as in $\text{exec}(D_k^*, \sigma_k)$
- in the reached P^{k+1}-quiescent configuration $\sigma_k(D_k) =: C_{k+1}$, exactly $k + 1$ variables $W_{k+1} = W_k' \cup X$ are covered by processes in P_{k+1}
Proof. (cont.) Unfortunately, we will usually have different sets

- W_k of variables covered in C_k
- W'_k of variables covered in C^*_k

\Rightarrow We cannot claim $W_k \subseteq W_{k+1} = W'_k \cup X$ needed for our induction proof to go through

However, there are only finitely many different sets of k variables:

- We just iterate our schedule $\tau \sigma_k$ sufficiently often
- There must be some schedule $\tau^1 \sigma^1_k \cdots \tau^x \sigma^x_k$ that produces $W'_k = W_k$ (a single one is sufficient for our proof)

Since $W'_k = W_k$, we have indeed constructed the sought configuration C'_k and we are done \hfill \Box
Fault-Tolerant Consensus
Processor Failures

Up to now, we did not consider failures. From now on,

- an unknown set F of processors may be(come) faulty
- we do not know when a faulty processor becomes faulty

We just know

- how many processors $0 \leq f \leq n$ may at most be faulty during the entire execution ($|F| \leq f$)
- which kind of failures are allowed:
 - **Crash failures**: A processor simply stops executing events (also in the middle of a broadcast)
 - **Byzantine failures**: A processor can do whatever it wants (including sending arbitrary messages)
 - Communication is still reliable [could be dropped]
The Consensus Problem

Every processor p_i has

- an input value x_i from some finite set (often binary)
- an output value y_i, initially undefined
- a consensus algorithm that computes a value for y_i

Required properties in every admissible execution:

- **Termination**: y_i is irrevocably assigned a value at every non-faulty processor p_i eventually
- **Agreement**: $y_i = y_j$ for all terminated non-faulty processors p_i and p_j
- **Validity**: If $x_k = v$ for all processors p_k, then $y_i = v$ for every terminated non-faulty processor p_i
Lamport’s Byzantine Army

Consider several divisions of the Byzantine army, each commanded by a general, camped outside an enemy city.

- Every general has some local opinion of whether to attack, say, at noon, or not
- Byzantine army can win only if all (loyal) divisions are attacking together
- Generals can communicate via reliable messengers ⇒ need to execute a consensus protocol

Still,

- some of the Byzantine generals may be traitors, who
- send confusing messages to trigger an inconsistent attack of a subset of loyal generals only
Overview of Consensus Results

Synchronous message passing case:

<table>
<thead>
<tr>
<th>f-resilient Algorithm</th>
<th>Crash</th>
<th>Byzantine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rounds:</td>
<td>$f + 1$</td>
<td>$f + 1$</td>
</tr>
<tr>
<td>Number or procs:</td>
<td>$n \geq f + 1$</td>
<td>$n \geq 3f + 1$</td>
</tr>
<tr>
<td>Message size:</td>
<td>poly</td>
<td>poly</td>
</tr>
</tbody>
</table>

Asynchronous case:

- **Impossible** in both message passing and SHM systems even for $f = 1$ crash failures
- Reason: Correct processors never know whether a still missing message from some process will ever arrive
Synchronous Model with Crashes (I)

Admissible executions in message passing systems:

- Processors faithfully execute their algorithm in lockstep rounds, with round k consisting of
 - simultaneously send round-k messages
 - delivery of all round-k messages
 - simultaneous single comp-event, terminating round k until they possibly crash
- Message sending for round k happens at same time, but causally after comp-event of round $k - 1$ [or in initial state for $k = 1$]
- Nice conceptual view to avoid complications with crash failures at time k: Assume that all actions in round k happen at time $(k - 1)$.5!
Synchronous Model with Crashes (II)

A processor $\in F$ that crashes in round k
- neither sends any round k' message, for any round $k' \geq k + 1$,
- nor attempts to execute the comp-event of round k'
- may send round k messages to an arbitrary subset of its destination processors [thereby causing difficulties with inconsistent reception]

Thus, a processor that
- fails by the end of round $k - 1 \Rightarrow$ does not send anything in round k
- fails exactly in round $k \Rightarrow$ may send to a subset in round k
Asynchronous Model with Crashes

Admissible executions in message passing systems:

- Every processor faithfully executes its algorithm until it possibly crashes
- A processor that crashes during its k-th comp-event
 - does not execute further comp-events
 - sends the k-th comp-messages to an arbitrary subset of its destination processors only
- all sent messages are eventually delivered

Same for SHM model; just drop message deliveries.
A Simple Consensus Algorithm 15

Every processor p_i maintains a set V of values seen so far, initially $V = \{x_i\}$

- add received new values to V and forward them
- proceed for $f + 1$ rounds

Pseudo-code Algorithm 15 for p_i, $0 \leq i \leq n - 1$:

1. Initially $V_i = \{x_i\}$

2. for $k = 1$ to $f + 1$ do // for $f + 1$ rounds
 2.1 send V_i to all
 3. receive V_j from p_j for all j (including i)
 4. $V_i := \bigcup_{j=0}^{n-1} V_j$
 5. $y_i := \min(V_i)$ // decide at end of round $f + 1$
Theorem 216. Algorithm 15 is a f-crash resilient synchronous consensus algorithm.
Correctness Algorithm 15

Theorem 216. Algorithm 15 is a \(f \)-crash resilient synchronous consensus algorithm.

Proof. Termination is trivial, we thus have to show:

- **Validity:** Obvious, since every \(\min(V_i) \) must be some \(p_j \)'s \(x_j \).
- **Agreement:** It suffices to show that if \(x \in V_i \) at the end of round \(f + 1 \) \(\Rightarrow x \in V_j \), for any non-faulty \(p_i \) and \(p_j \).

Let \(r \) be first round where \(x \) is added to any non-faulty \(p_i \)'s set \(V_i \).

- If \(r \leq f \), then \(p_i \) sends \(x \) in round \(r + 1 \leq f + 1 \) to \(p_j \), which causes \(p_j \) to add \(x \) to \(V_j \) and we are done.
- If \(r = f + 1 \), there must be a chain of \(f + 1 \) different processors \(p_{i_1}, \ldots, p_{i_{f+1}} \) along which \(p_{i_1} \)'s initial value \(x \) was forwarded to \(p_i \). Still, we have at most \(f \) faulty processors, so at least one must be correct, which contradicts minimality of \(r = f + 1 \).
Rigorous Proof: Round Invariants (I)

For any $r \geq 0$, let

- V^r_p be the value of V_p at the end of round r; V^0_p is the initial value of V_p

- Corr^r be the set of processors that have not crashed by the end of round r; $\text{Corr}^0 = \{p_0, \ldots, p_{n-1}\}$

- Assume “virtual” round $r = 0$, ending in initial configuration
For any \(r \geq 0 \), let

- \(V^r_p \) be the value of \(V_p \) at the end of round \(r \); \(V^0_p \) is the initial value of \(V_p \)
- \(Corr^r \) be the set of processors that have not crashed by the end of round \(r \); \(Corr^0 = \{ p_0, \ldots, p_{n-1} \} \)
- Assume “virtual” round \(r = 0 \), ending in initial configuration

Lemma 217. If \(V^{R-1}_p = V \) for all processors \(p \in Corr^{R-1} \) for some \(R \geq 1 \), then \(V^r_q = V \) for all \(q \in Corr^r \) for any round \(r \geq R - 1 \).

Proof. Trivial induction on rounds, starting with round \(R - 1 \). \(\square \)
Let a failure-free round (ff-round) \(r \geq 1 \) be a round where \(\text{Corr}^{r-1} = \text{Corr}^r \).

Lemma 218. After any ff-round \(r \), it holds that \(V^r_p = V^r_q \) for all \(p, q \in \text{Corr}^r \).

Proof. Consider \(v \in V^r_p \) of \(p \in \text{Corr}^{r-1} = \text{Corr}^r \). Clearly, \(v \) has been sent to \(p \) by some processor \(s \) either

- in round \(k \leq r - 1 \); since \(p \in \text{Corr}^r \subseteq \text{Corr}^{k+1} \), \(v \) is sent to all processes in \(\text{Corr}^r \) in round \(k + 1 \).

- in round \(r \), but then \(s \in \text{Corr}^{r-1} = \text{Corr}^r \), such that \(v \) is sent to all processors in \(\text{Corr}^r \) in round \(r \).

Hence, \(v \in V^r_q \) for any processor \(q \in \text{Corr}^r \) as well. \(\square \)
Theorem 219. Algorithm 15 is a f-crash resilient synchronous consensus algorithm.
Theorem 219. Algorithm 15 is a f-crash resilient synchronous consensus algorithm.

Proof. We have to show:

- Termination: Obvious.
- Validity: Follows immediately from first lemma.
- Agreement: Since we have $f + 1$ rounds but only at most f faulty processors,
 - at least one round r must be failure-free
 - from round r on, all processors p have the same set V_p by the first lemma
 - decide on same value $\min(V_i^{f+1})$.

\square
Bivalence Proofs: Some Definitions

A configuration C [at the end of a round] of a binary consensus algorithm is called

- **0-decided** if some correct p_i has already decided 0
- **1-decided** if some correct p_i has already decided 1
- **0-valent** if all decided configurations C' reachable from C are 0-decided
- **1-valent** if all decided configurations C' reachable from C are 1-decided

Classify configurations C as

- **univalent** if C is either 1-valent or 0-valent
- **bivalent** if both a 0-decided and a 1-decided configuration can be reached from C
Some more Definitions

Let α, α_1 and α_2 be admissible executions.

- $\text{dec}(\alpha)$ denotes the unique decision value of all correct processors

- $\alpha|_{p_i}$ denotes p_i’s view of the execution, consisting of
 - all comp and del events at p_i
 - p_i’s state in the initial configuration of α

- α_1 is similar to α_2 for some non-faulty p_i, denoted $\alpha_1 \overset{p_i}{\sim} \alpha_2$, if $\alpha_1|_{p_i} = \alpha_2|_{p_i}$

- α_1 is indirectly similar to α_2, denoted $\alpha_1 \overset{}{\approx} \alpha_2$, if there are executions β_k and correct processors p_k with $\alpha_1 = \beta_1 \overset{p_1}{\sim} \beta_2 \overset{p_2}{\sim} \cdots \overset{p_j}{\sim} \beta_{j+1} = \alpha_2$
Decisions in Similar Executions

We have the following key observations:

- If $\alpha_1 \overset{p_i}{\sim} \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$
- If $\alpha_1 \approx \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$
Decisions in Similar Executions

We have the following key observations:

- If $\alpha_1 \overset{p_i}{\sim} \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$
- If $\alpha_1 \approx \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$

Subsequently, we consider message-passing systems with

- $n \geq f + 2$ processors [can be extended to $n \geq f + 1$]
- at most $f \geq 0$ crash failures

and study binary synchronous consensus algorithms

- that send a message to all processors in every round and keep a full message history in the local state [can be dropped by reduction]
- in failure-sparse executions: At most 1 crash per round
Synchronous Configuration Trees

Consider all admissible executions \(\text{exec}(C^0, \sigma) \) of a full-history synchronous algorithm

- starting from some fixed initial state \(C^0 \)
- with at most one (additional) crash per round

All reachable configurations can be arranged in a configuration tree, with

- vertices representing (unique) configurations
- edges representing (unique) rounds + failure patterns

Vertex \(C^{k-1} \) has a successor \(C^k_{q,F_q} \) for

- every not-yet crashed processor \(q \)
- every subset \(F_q \) (including \(F_q = \emptyset \)) of processors that do not receive \(q \)'s message in round \(k \)
Theorem 224. Any consensus algorithm A for $n \geq f + 2$ processors that is resilient to $f \geq 1$ crash failures requires at least $f + 1$ rounds in some admissible execution.
Theorem 224. *Any consensus algorithm* \mathcal{A} *for* $n \geq f + 2$ *processors that is resilient to* $f \geq 1$ *crash failures requires at least* $f + 1$ *rounds in some admissible execution.*

Proof. The proof consists of two parts, which will be proved as independent lemmas subsequently:

1. There is an $f - 1$-round (sparse) execution α_{f-1} that ends in a bivalent (and hence undecided) configuration
2. By extending α_{f-1} by one additional round, at least one correct processor is still undecided

Hence, f rounds are not enough for all correct processors to decide. \square
Lemma 225. Algorithm A has a bivalent initial configuration.
Lemma 225. *Algorithm A has a bivalent initial configuration.*

Proof. For the sake of contradiction, assume that all initial configurations are univalent. Clearly,

- I_{0*} where all processors p_i start with input value $x_i = 0 \Rightarrow$ must be 0-valent by validity
- I_{1*} where all processors p_i start with input value $x_i = 1 \Rightarrow$ must be 1-valent by validity

Hence, toggling x_0, x_1, \ldots one after the other starting from I_{0*} reveals that there is

- some 0-valent initial configuration I_0, and
- some 1-valent initial configuration I_1

that differ in a single x_i only. \qed
Bivalent Initial Configuration Lemma (II)

Proof. (cont.)

Now consider the (sparse) admissible schedule σ where
- p_i crashes initially and all other processors are correct
- all correct processors have decided in $\sigma(I_0) \Rightarrow$ decision must be 0 as I_0 is 0-valent

Let $\alpha_0 = \text{exec}(I_0; \sigma)$ be the resulting admissible execution and consider $\alpha_1 = \text{exec}(I_1; \sigma)$.

- α_1 is indistinguishable from α_0 for any $p_j \neq p_i$
- $\alpha_1 \sim_{p_j} \alpha_0 \Rightarrow \text{dec}(\alpha_1) = \text{dec}(\alpha_0) = 0$

However, $\text{dec}(\alpha_1)$ should be 1 since configuration I_1 where α_1 starts is 1-valent, which provides the required contradiction. \qed
Lemma 227. For each k, $0 \leq k \leq f - 1$, there is a k-round execution of A that ends in a bivalent configuration.
Lemma 227. For each \(k, 0 \leq k \leq f - 1 \), there is a \(k \)-round execution of \(A \) that ends in a bivalent configuration.

Proof. By induction.

The basis \(k = 0 \) is provided by the previous lemma.

For the induction step, assume that \(\alpha_{k-1} \) is the (sparse) \(k-1 \)-round execution ending in a bivalent configuration \(C'_{k-1} \), according to the induction hypothesis. Note: \(k - 1 \leq f - 2 \) here. 2 cases:

- There is some (sparse) 1-round extension of \(\alpha_{k-1} \) that ends in a bivalent configuration \(\Rightarrow \) we are done.
- All (sparse) 1-round extensions of \(\alpha_{k-1} \) lead to univalent configuration \(\Rightarrow \) use contradiction proof.
Bivalent Successor Configuration (II)

Proof. (cont.)

Assuming that all 1-round extensions of α_{k-1} lead to univalent configuration, consider two different ones:

- β_k where no crash occurs in round k and w.l.o.g. a 1-valent configuration is reached
- γ_k where one crash occurs in round k and a 0-valent configuration is reached (since C_{k-1} is bivalent, γ_k must exist).

In γ_k,

- let p_i be the processor that crashes in round k, and
- $q_1, \ldots, q_m, 1 \leq m \leq n$, be the processors that do not get a message from p_i.

□
Proof. (cont.)

Now define α^j_k, $0 \leq j \leq m$, as the one round extension of α_{k-1} where p_i does not send a message to q_1, \ldots, q_j. Clearly,

- $\alpha^0_k = \beta_k$ and reaches a 1-valent configuration C^0_k
- $\alpha^m_k = \gamma_k$ and reaches a 0-valent configuration C^m_k

Somewhere in $C^0_k, C^1_k, \ldots, C^m_k$ there must be a switch from 1-valent to 0-valent. Let j be the appropriate index, such that

- configuration C^j_k reached by α^j_k is 1-valent
- configuration C^{j+1}_k reached by α^{j+1}_k is 0-valent
- only processor q_{j+1} sees a difference between α^j_k and α^{j+1}_k
Bivalent Successor Configuration (IV)

Proof. (cont.)

Since at most $k \leq f - 1$ processes can have crashed in any α_k^x, q_{j+1} may additionally crash at the beginning of round $k + 1$, without exceeding the failure bound f

- kills the only witness of the difference between α_k^j and α_k^{j+1}

Consider the admissible extensions δ_k^j of α_k^j and δ_k^{j+1} of α_k^{j+1} where q_{j+1} crashes at the beginning of round $k + 1$. For any correct p_ℓ,

- $\delta_k^j \sim_k p_\ell \delta_k^{j+1}$ such that the decision values must be the same

- Contradiction, since the configurations reached by α_k^j and α_k^{j+1} had different valences.

This confirms that some one-round extension α_k of α_{k-1} must indeed end in a bivalent configuration. \qed
Lemma 231. If α_{f-1} is an $f-1$-round (sparse) execution of A that ends in a bivalent configuration C_{f-1}, then there is a 1-round extension in which some correct processor has not decided.
Lemma 231. If α_{f-1} is an $f - 1$-round (sparse) execution of \mathcal{A} that ends in a bivalent configuration C_{f-1}, then there is a 1-round extension in which some correct processor has not decided.

Proof. If there is a 1-round extension with at most one crash in round f that ends in a bivalent configuration, we are done. Otherwise, consider the 1-round extensions

- β_f where no crash occurs in round f and w.l.o.g. a 1-valent configuration is reached

- γ_f where one crash occurs in round f and a 0-valent configuration is reached (since C_{f-1} is bivalent, γ_f must exist).

Let p_i be the unique processor that fails in round f in γ_f. \qed
No Decision in Round f (II)

Proof. (cont.)

The processor p_i crashing in round f fails to send a message to some processor p_j, which must be correct since

- p_j cannot crash in round f as p_i does so (sparse execution)
- not all candidates p_j can have crashed before round f (as otherwise β_f and γ_f would be indistinguishable for all correct processes \Rightarrow cannot lead to configurations with different valences)

Consider a third 1-round extension δ_f of α_{f-1} that is

- the same as γ_f, except that
- p_i succeeds to send a message to some correct $p_k \neq p_j$
- Note: Such a p_k must exist since $n \geq f + 2$, and δ_f may be γ_f.

\[\square \]
No Decision in Round f (III)

Proof. (cont.)

Since $\beta_f \overset{p_k}{\sim} \delta_f$ as well as $\delta_f \overset{p_j}{\sim} \gamma_f$, it follows that in δ_f

- the decision of p_k at the end of round f can only be 1 (or undefined)
- the decision of p_j at the end of round f can only be 0 (or undefined)
- their decision must be the same \Rightarrow cannot both be defined

Note that $\beta_f \overset{p_k}{\sim} \delta_f \nRightarrow \beta_{f+1} \overset{p_k}{\sim} \delta_{f+1}$, hence

- if p_k is undefined at the end of round f in δ_f,
 \Rightarrow it need not decide 1 in some later round following δ_f even though the configuration reached by β_f was 1-valent
 \Rightarrow proof does not contradict the possibility of β_f reaching a 1-valent and γ_f reaching a 0-valent configuration

\square
Synchronous Byzantine Consensus (I)

We now increase the adverse capabilities of faulty processors:

- They need not adhere to the algorithm at all
- They can send any message, even inconsistently, to any receiver
- They can collude in an attempt to maximize their adverse power.

Also need to adapt validity condition:

- We cannot assume anything about the initial value x_k of a Byzantine processor p_k
- Byzantine validity: If $x_k = v$ for all correct processors p_k, then $y_i = v$ for every terminated correct processor p_i
Synchronous Byzantine Consensus (II)

Upcoming results:

- Exponential Information Gathering (EIG) algorithm
- Phase King algorithm
- $n \geq 3f + 1$ lower bound for required number of processors
- $[f + 1$ lower bound for number of rounds still applies]
Naive Approach

Recall Algorithm 15:
- Just forward all values received in round $k - 1$ in round k
- Decide on minimum value at the end of round $f + 1$

Problem: Byzantine faulty processor can
- inconsistently send different values, in any round
- “drive” any number of correct processors towards some value

⇒ easily violate agreement

Just replacing minimum by majority does not help ⇒ need additional ideas
EIG Algorithm (I)

Requirements and properties:
- \(n \geq 3f + 1 \)
- \(f + 1 \) rounds

Principle of operation: Trace sources of information
- Every processor \(p_i \) sends its \(x_i \) to all in the first round
- Forwarding stage: \(f \) additional rounds where every \(p_j \) forwards the information obtained in the previous round ("\(p_j \) says that \(p_k \) says that \ldots that \(p_i \) sent value \(x_i \")
- Decision stage: At the end of round \(f + 1 \), compute decision based on the values received in forwarding stage
EIG Algorithm (II)

Every node maintains a labeled tree data structure with $f + 2$ levels (height $f + 1$):

- The level-0 root has the empty label ε
- A level-k node, $1 \leq k \leq f + 1$, is labeled with a unique variation (without replacement) $\pi = i_1 i_2 \cdots i_k$ of processor indices $\in \{0, \ldots, n - 1\}$
- The leafs are at level $f + 1$
- Every node at level $k < f + 1$ has degree $n - k$
- $\text{tree}_i(\pi)$ denotes the value stored in p_i's tree node with label π
- A node with label $\pi = \pi' i_k$ (and the edge leading to it) corresponds to processor p_{i_k} as it gets its data from p_{i_k}.
EIG Algorithm (III)

Forwarding stage:
- Every p_i stores x_i into the root of its tree
- In round k, $1 \leq k \leq f + 1$, processor p_i
 - sends level $k - 1$ of its tree to all
 - stores in its node with label $\pi' i_k$ the value v received from p_{i_k} from its level-$k - 1$ node with label π' (or v_\perp in case of no or an erroneous message)
 - means “p_{i_k} says that $p_{i_{k-1}}$ says that ... that p_{i_2} says that p_{i_1} sent v”

Decision stage:
- At the end of round $f + 1$, processor p_i decides
 $y_i = \text{resolve}_i(\varepsilon)$
EIG Algorithm (IV)

The recursive majority vote resolve_i is defined as

- $\text{resolve}_i(\pi) = \text{tree}_i(\pi)$ if π is a leaf
- $\text{resolve}_i(\pi)$ is the majority of $\text{resolve}_i(\pi'')$ for all children $\pi'' = \pi_k$ of π (or \perp if no majority exists)

\Rightarrow Corresponds to building up a resolve tree that has the same leafs as the forwarding tree
EIG Algorithm (IV)

The recursive majority vote resolve_i is defined as

- $\text{resolve}_i(\pi) = \text{tree}_i(\pi)$ if π is a leaf
- $\text{resolve}_i(\pi)$ is the majority of $\text{resolve}_i(\pi'')$ for all children $\pi'' = \pi_k$ of π (or \bot if no majority exists)

\implies Corresponds to building up a resolve tree that has the same leafs as the forwarding tree

A few additional definitions for our analysis:

- A node π is common if $\text{resolve}_i(\pi) = \text{resolve}_j(\pi)$ for all non-faulty p_i and p_j
- A subtree has a common frontier if there is a common node on every path from the root to its leaves
Lemma 241. If the subtree rooted at node π has a common frontier, then π is common.
Lemma 241. *If the subtree rooted at node π has a common frontier, then π is common.*

Proof. By induction on the level of π. If π is a leaf, the statement follows directly from the definition of a common frontier.

Induction step: Assume π is a node at level ℓ, and that the lemma holds for nodes at level $\ell + 1$. If π was not common,

- every subtree rooted at a child π_k of π must have a common frontier
- since every child π_k has level $\ell + 1$, the induction hypothesis reveals that they must all be common
- All non-faulty processors resolve the same value for all children and hence for π, i.e., π must be common.

\[\blacksquare\]
Lemma 242. For all tree node labels \(\pi \) and correct processors \(p_i, p_j, p_k \), we have \(\text{tree}_i(\pi j) = \text{tree}_j(\pi) \), and hence \(\text{tree}_i(\pi j) = \text{tree}_k(\pi j) \).
Lemma 242. For all tree node labels π and correct processors p_i, p_j, p_k, we have $\text{tree}_i(\pi_j) = \text{tree}_j(\pi)$, and hence $\text{tree}_i(\pi_j) = \text{tree}_k(\pi_j)$.

Proof. Since p_j is correct, it faithfully sends its value $\text{tree}_j(\pi)$ to p_i. Since the latter is also correct, it stores this value in $\text{tree}_i(\pi_j)$. \qed
Lemma 242. For all tree node labels π and correct processors p_i, p_j, p_k, we have $\text{tree}_i(\pi j) = \text{tree}_j(\pi)$, and hence $\text{tree}_i(\pi j) = \text{tree}_k(\pi j)$.

Proof. Since p_j is correct, it faithfully sends its value $\text{tree}_j(\pi)$ to p_i. Since the latter is also correct, it stores this value in $\text{tree}_i(\pi j)$.

Lemma 242. For every tree node label $\pi = \pi' j$ and correct processors p_j, p_i, it holds that $\text{resolve}_i(\pi) = \text{tree}_i(\pi)$ at every non-faulty p_i.
Lemma 242. For all tree node labels π and correct processors p_i, p_j, p_k, we have $\text{tree}_i(\pi j) = \text{tree}_j(\pi)$, and hence $\text{tree}_i(\pi j) = \text{tree}_k(\pi j)$.

Proof. Since p_j is correct, it faithfully sends its value $\text{tree}_j(\pi)$ to p_i. Since the latter is also correct, it stores this value in $\text{tree}_i(\pi j)$.

Lemma 242. For every tree node label $\pi = \pi' j$ and correct processors p_j, p_i, it holds that $\text{resolve}_i(\pi) = \text{tree}_i(\pi)$ at every non-faulty p_i.

Proof. By induction on the level of π, starting from the leaves:

- Induction basis: If π is a leaf, the lemma holds by definition of recursive majority.

- Induction step: If $\pi = \pi' j$ ending in correct p_j is a non-leaf, it has at most level f and hence at least degree $n - f$.

\[\blacksquare\]
Analysis EIG Algorithm (III)

Proof. (cont.)
Induction step: If $\pi = \pi' j$ ending in correct p_j is a non-leaf, it has at most level f and hence at least degree $n - f$.

- Since $n \geq 3f + 1$, π has a majority of children πk corresponding to a correct p_k.
- Applying the induction hypothesis reveals, at any correct p_i, $\text{resolve}_i(\pi k) = \text{tree}_i(\pi k)$
- Since, by the previous lemma,
 $$\text{tree}_i(\pi k) = \text{tree}_k(\pi) = \text{tree}_i(\pi)$$
 this implies $\text{resolve}_i(\pi k) = \text{tree}_i(\pi)$
- Hence, all of π's non-faulty children and thus π resolve to $\text{tree}_i(\pi)$ as asserted.
Theorem 244. Every $\pi = \pi' j$ ending in a correct processor p_j is common.

Proof. For correct processors p_i, p_k, our previous results establish:

- By the last but one lemma, $\text{tree}_i(\pi) = \text{tree}_k(\pi)$
- By the previous lemma, $\text{resolve}_i(\pi) = \text{tree}_i(\pi) = \text{tree}_k(\pi) = \text{resolve}_k(\pi)$.

\square
Theorem 245. For $n \geq 3f + 1$, EIG solves consensus in presence of up to f Byzantine failures.
Theorem 245. For \(n \geq 3f + 1 \), \(\text{EIG} \) solves consensus in presence of up to \(f \) Byzantine failures.

Proof. Validity: If all non-faulty processors start with the same input \(v \), a majority of children \(j \) of the root at any non-faulty \(p_i \) satisfy
\[
\text{resolve}_i(j) = \text{tree}_i(j) = \text{tree}_j(\varepsilon) = v
\]
by our lemmas.

Hence, \(\text{resolve}_i(\varepsilon) = v \) as well.

Agreement: Each path from a child of the root to a leaf involves \(f + 1 \) nodes that correspond to different processors. Hence,

- at least one processor on every path from the root to the leaves is correct \(\Rightarrow \) the corresponding node is common by Theorem 244
- the root has a common frontier

Hence, the root must be common, which completes our proof. \(\square \)
Less Costly Alternative to EIG?

Recall: The EIG algorithm has

- optimal time complexity \((f + 1)\) rounds
- optimal resilience \((n \geq 3f + 1)\)
- exponential message complexity

Alternative idea: Don’t trace sources of information but

- just disseminate values as in the crash-tolerant Algorithm 15
- decide on majority value if “overwhelming majority” exists
- rely on a single correct processor’s value otherwise
Phase King Algorithm (I)

Operates in $f + 1$ phases of 2 rounds each

- First round: Disseminate current preference values system-wide
- Second round: Use the rotating coordinator principle to select single correct processor (the “king”) if no “overwhelming majority” exists

The Phase King algorithm

- solves consensus with polynomial message complexity
- with sub-optimal round complexity $2(f + 1)$
- and sub-optimal resilience $n \geq 4f + 1$
Phase King Algorithm (II)

Pseudo-code Algorithm 16 for p_i, $0 \leq i \leq n - 1$:

1. $v := x$ // Init preference to own proposed value

2. for $k = 1$ to $f + 1$ do // for $f + 1$ phases (2 rounds each)
3. /* round 2k-1 */
4. send $\langle v \rangle$ to all processors
5. receive $\langle v_j \rangle$ from all p_j
6. $maj :=$ majority among v_j (v_\perp if none)
7. $mult :=$ multiplicity of maj among v_j
8. /* round 2k */
9. if $i = k$ then send $\langle maj \rangle$ to all processors
10. receive $\langle king-maj \rangle$ from p_k (v_\perp if none)
11. if $mult > n/2 + f$ then $v := maj$ else $v := king-maj$

12. $y := v$ // decide at end of phase $f + 1$
We say

\[p_i \text{ prefers value } v \text{ at the beginning of phase } k \text{ [\(= \text{ the end of phase } k - 1 \), with phase 0 representing the initial configuration] if} \]

\[v_i^{2k-2} = v \text{ at the end of round } 2k - 2 \]
We say

\(p_i \) prefers value \(v \) at the beginning of phase \(k \) \([= \text{the end of phase } k - 1, \text{with phase } 0 \text{ representing the initial configuration}] \) if

\[v_i^{2k-2} = v \text{ at the end of round } 2k - 2 \]

Lemma 249 (Persistence of agreement). If all correct processors prefer \(v \) at the beginning of phase \(1 \leq k \leq f + 1 \), then they all prefer \(v \) at the end of phase \(k \).
Analysis of Phase King Algorithm (I)

We say

\(p_i \) prefers value \(v \) at the beginning of phase \(k \) [= the end of phase \(k - 1 \), with phase 0 representing the initial configuration] if

\[v_i^{2k-2} = v \] at the end of round \(2k - 2 \)

Lemma 249 (Persistence of agreement). *If all correct processors prefer \(v \) at the beginning of phase \(1 \leq k \leq f + 1 \), then they all prefer \(v \) at the end of phase \(k \).*

Proof. By the code,

1. every processor receives at least \(n - f \) copies of \(v \) in the first round of phase \(k \)
2. \(n - f > n/2 + f \) since \(n > 4f \), so all processors prefer \(v \) at the end of phase \(k \)
Analysis of Phase King Algorithm (II)

Persistence of agreement already implies

- Validity
- Termination
Persistence of agreement already implies
- Validity
- Termination

For agreement: Since there are $f + 1$ phases
- Every phase has a different king
 \Rightarrow There is at least one phase g with a correct king

It only remains to be shown that all correct processors prefer same value at the end of phase g …
Lemma 251. Let g be a phase with a correct king p_g. Then all correct processors finish phase g with the same preference value.
Analysis of Phase King Algorithm (III)

Lemma 251. Let g be a phase with a correct king p_g. Then all correct processors finish phase g with the same preference value.

Proof. 2 exhaustive cases:

- All correct processors p_j use king-maj_j for their preference. Since p_g is correct, king-maj_j must be the same at all p_j.

- Suppose some p_i uses maj_i for its preference, then
 - p_i must have received $> n/2 + f$ messages containing maj_i in the first round
 - every other processor p_j, including p_g, must have received $> n/2$ of those messages as well, and thus set $\text{maj}_j = \text{maj}_i$
 \Rightarrow every processor p_j sets $\text{king-maj}_j = \text{maj}_i$ as well
 \Rightarrow every processor p_j assigns $v_j = \text{maj}_i$.

\[\square \]
Lower Bound for Number of Processors

Contradicting intuition,

- a majority of correct processors is NOT sufficient
- ElG needed $n \geq 3f + 1$ processors
Lower Bound for Number of Processors

Contradicting intuition,

- a majority of correct processors is NOT sufficient
- EIG needed \(n \geq 3f + 1 \) processors

Why is this?
Contradicting intuition,

- a majority of correct processors is NOT sufficient
- EIG needed $n \geq 3f + 1$ processors

Why is this?

Recall illustrating example:

- Consider $f = 1$
- Try to synchronize the clocks of 3 processors p_0, p_1, p_2, one of which (say, p_0) is Byzantine

Problem: p_0 may send different information to p_1 and p_2.
Lower Bound for $f = 1$ (I)

Theorem 253. *There is no algorithm that solves consensus in presence of a single Byzantine failure in a system of 3 processors.*
Lower Bound for $f = 1$ (I)

Theorem 253. *There is no algorithm that solves consensus in presence of a single Byzantine failure in a system of 3 processors.*

Proof. Suppose there is some binary consensus algorithm $A = (A, B, C)$ for three processors

- p_0 executes code A, p_1 and p_2 execute B and C, respectively
- arrange six non-faulty processors in a ring (A, B, C, A, B, C)
- assign the input values $(1, 1, 0, 0, 0, 1)$ to those processors and let them execute their algorithm

Clearly, the resulting execution α_6 does not necessarily solve consensus in this six processor system, BUT ...
Lower Bound for $f = 1$ (II)

Proof. (cont.)

α_6 ensures that

- every processor has a fixed, well-defined behavior
- every algorithm locally perceives a system that looks like a three-processor system (with one Byzantine faulty processor)
 - For example, $\alpha_{6}^{p_0,p_1} = \alpha_6|\left\{p_0, p_1\right\} = \alpha_3^1|\left\{p_0, p_1\right\}$
 - A single neighbor is “split” on two processors \Rightarrow acts Byzantine w.r.t. the others
 - Every two non-split processors (p_0, p_1) should reach agreement
Lower Bound for $f = 1$ (III)

Proof. (cont.)

As a consequence,

- every two “consecutive” three-processor systems have one processor common, like p_1 in

$$\alpha_{6}^{p_0,p_1} = \alpha_{6}|\{p_0, p_1\} = \alpha_{3}^{1}|\{p_0, p_1\}$$
$$\alpha_{6}^{p_1,p_2} = \alpha_{6}|\{p_1, p_2\} = \alpha_{3}^{2}|\{p_1, p_2\}$$

- p_1 has the same view $\alpha_{3}^{1}|p_1 = \alpha_{3}^{2}|p_1$ in both \Rightarrow same decision

Consider α_{3}^{1}, α_{3}^{2} and α_{3}^{3}:

- Validity enforces decision 1 in α_{3}^{1} and 0 in α_{3}^{3}
- Unique decision in α_{3}^{2} should be the same as in both α_{3}^{1} and α_{3}^{3}

\Rightarrow Contradiction
Lower Bound for arbitrary f

Theorem 256. There is no algorithm that solves consensus in presence of f Byzantine failure in a system of $n \leq 3f$ processors.
Theorem 256. There is no algorithm that solves consensus in presence of f Byzantine failure in a system of $n \leq 3f$ processors.

Proof. We use a simple simulation (reduction) argument:

- Assume such an algorithm A exists
- Consider a system of 3 processors, where each processor executes A for at most $n/3$ “sub-processors” (e.g. in round robin order)
- Let a processor terminate if any of its sub-processor algorithms terminate, returning the latter’s decision

Obviously,

- If ≤ 1 processor is Byzantine, $\leq n/3$ sub-processors are
- A should achieve consensus \Rightarrow this contradicts the 3-processor impossibility, however.
Asynchronous systems of n processors:

- Processors and communication are asynchronous
- At most f processors may fail by crashing, i.e.,
 - work correctly up to some comp-event ϕ_k
 - do not execute further comp-events ϕ_l with $l > k$
- MP: send the k-th comp-message to an arbitrary subset of destination processors only
- MP: Communication is completely reliable

Will show: Consensus is impossible both in SHM and MP systems even if $f = 1$
Overview of Upcoming Results

Wait-free case $f = n - 1$

- Wait-free \simeq algorithms must not wait for messages since they could block
- Impossibility easier to show since many faulty processes

General case $f = 1$

- Same as wait-free case for $n = 2$
- Show impossibility for arbitrary n by clever reduction

Above results shown for SHM systems.
- Impossibility for MP systems by simple reduction
- [Well-known direct proof by Fischer, Lynch & Paterson]
Asynchronous Bivalence Proofs: Definitions

A configuration C in an admissible execution is called

- **0-decided** if some (correct or faulty) p_i has already decided 0
- **1-decided** if some p_i has already decided 1
- **0-valent** if all decided configurations C' reachable from C are 0-decided
- **1-valent** if all decided configurations C' reachable from C are 1-decided

Classify configurations C as

- **univalent** if C is either 1-valent or 0-valent
- **bivalent** if both a 0-decided and a 1-decided configuration can be reached from C
Asynchronous Configuration Trees (SHM)

Consider all admissible executions $\text{exec}(C^0, \sigma)$ of an asynchronous wait-free SHM algorithm

- starting from some fixed initial state C^0
- with arbitrary infinite schedule σ (no restriction)

All reachable configurations can be arranged in a configuration tree, with

- vertices representing (unique) configurations [encode number of steps taken by every processor in configuration]
- edges represent steps
- every vertex C has exactly n successors $C_i = i(C')$, $0 \leq i \leq n - 1$, corresponding to p_i taking the next step
Lemma 261. Let C_1 and C_2 be two univalent configurations of a wait-free binary consensus algorithm. If $C_1 \overset{p_i}{\sim} C_2$ for some correct p_i, then both configurations have the same valence.
Preparation Lemma

Lemma 261. Let C_1 and C_2 be two univalent configurations of a wait-free binary consensus algorithm. If $C_1 \overset{p_i}{\sim} C_2$ for some correct p_i, then both configurations have the same valence.

Proof. Consider an infinite p_i-only schedule σ starting from C_1:

- p_i must decide in $\text{exec}(C_1, \sigma)$ because algorithm is wait-free
- Since C_1 is v-valent for some $v \in \{0, 1\}$, the decision must be v

Now apply σ to C_2:

- Yields a feasible execution since p_i starts from same configuration
- p_i must also decide in $\text{exec}(C_2, \sigma)$ and its decision must also be v.

\square
Lemma 262. Every wait-free binary consensus algorithm has a bivalent initial configuration.
Lemma 262. Every wait-free binary consensus algorithm has a bivalent initial configuration.

Proof. Consider the following initial configurations:

- \(I_0 \) where all processors \(p_i \) start with input value \(x_i = 0 \) ⇒ must be 0-valent by validity
- \(I_1 \) where all processors \(p_i \) start with input value \(x_i = 1 \) ⇒ must be 1-valent by validity

Now consider initial configuration \(I_{01} \) where \(x_0 = 0 \) and \(x_i = 1 \) for \(1 \leq i \leq n - 1 \). Assume, by way of contradiction, that it is univalent:

- \(I_{01} \overset{p_0}{\sim} I_0 \Rightarrow I_{01} \) must be 0-valent by preparation lemma
- \(I_{01} \overset{p_1}{\sim} I_1 \Rightarrow I_{01} \) must be 1-valent by preparation lemma

⇒ Contradiction; so \(I_{01} \) must be bivalent.
Lemma 263. Every bivalent configuration of a wait-free binary consensus algorithm has at least one bivalent successor configuration.
Lemma 263. Every bivalent configuration of a wait-free binary consensus algorithm has at least one bivalent successor configuration.

Proof. Every configuration C has exactly n possible successor configurations C_k, depending on which of p_0, \ldots, p_{n-1} takes the next step.

Assume, by way of contradiction, that all C_k are univalent.

Since C is bivalent, there must be i and j such that $C_i = i(C')$ and $C_j = j(C')$ are 0-valent and 1-valent, respectively.

Distinguish 2 possible cases . . .
Bivalent Successor Configuration (II)

Proof. (cont.) Distinguish 2 possible cases:

1. If the steps i and j commute (read/write different registers or read the same one), $i(j(C')) = j(i(C')) \Rightarrow i(C')$ and $j(C')$ cannot have different valences.

2. If i writes some register and j reads or writes it, consider $i(C')$ and $i(j(C'))$:
 - $i(j(C'))$ is 1-valent since $j(C')$ is 1-valent
 - $i(C')$ is 0-valent
 - $i(C') \overset{p_i}{\sim} i(j(C')) \Rightarrow$ should have same valence by preparation lemma.

□
Impossibility Wait-Free Consensus

Theorem 265. There is no SHM wait-free binary consensus algorithm for n processors.
Theorem 265. There is no SHM wait-free binary consensus algorithm for n processors.

Proof. We know from earlier lemmas:

- There is a bivalent initial configuration
- Every bivalent configuration has at least one bivalent successor configuration

Hence there is at least one non-terminating execution.
Impossibility 1-resilient Consensus?

The above impossibility proof was easy. Why?

- Wait-free property ($f = n - 1$) gives adversary much power
- Configuration tree has simple structure

How to make things more complicated?

- Non-trivial admissibility conditions make configuration tree complex (not “closed”)
 - Could adapt SHM bivalence proof for $f = 1$ (using schedules incorporating round robin exec.)
 - MP systems further complicated by message delivery requirement: Fischer, Lynch and Patterson’s famous proof even more complex
Consensus Impossibility for $f = 1$

Alternative solution: Use (clever) reduction:

- Assume that there is a n-processor consensus algorithm \mathcal{A} that can cope with $f = 1$ crashes.

- Use \mathcal{A} to construct a 2-processor consensus algorithm that can cope with a single crash, by letting
 - simulating processors p_0, p_1 simulate the execution of
 - simulated processors q_0, \ldots, q_{n-1}

Naive solution:

- Let p_0, p_1 simulate $n/2$ simulated processors each
- Does not work, since crash of simulating processor would result in $f = n/2$
Principle of BG Simulation (I)

Basic idea:

- W.l.o.g., code of every to be simulated processor q_j
- consists of alternating reads and writes, beginning with a read
- every write puts q_j’s entire state to dedicated SHM variable (single-writer)
- every read obtains the last written state of a single q_ℓ

\Rightarrow Sequence of (non-atomic) steps, consisting of a read of remote q_ℓ followed by q_j’s own write
Principle of BG Simulation (I)

Basic idea:

- W.l.o.g., code of every to be simulated processor q_j
 - consists of alternating reads and writes, beginning with a read
 - every write puts q_j’s entire state to dedicated SHM variable (single-writer)
 - every read obtains the last written state of a single q_ℓ

\Rightarrow Sequence of (non-atomic) steps, consisting of a read of remote q_ℓ followed by q_j’s own write

- Both simulating processors p_0, p_1 asynchronously execute code for all q_0, \ldots, q_{n-1} in round-robin order
Principle of BG Simulation (II)

The k-th (non-atomic) step of q_j, accessing a SHM variable at q_ℓ, executed by p_i consists of

1. reading q_j’s $k - 1$-state from SHM variable $Q_j[k - 1]$
2. reading q_ℓ’s last state h from $Q_\ell[h]$, by sequentially reading $Q_\ell[m]$, $m \geq 0$, until first non-written entry ($m = h + 1$) is seen
3. performing the state transition of q_j
4. writing q_j’s entire new state into q_j’s dedicated SHM variable $SQ^i_j[k]$ ("suggestion")

For every step of q_i, the faster p_i wins in determining the step’s global result $Q_j[k] := SQ^i_j[k]$
Principle of BG Simulation (III)

Determination of winner for q_j’s k-th step:

- Simulating p_i first writes own suggestion $SQ^i_j[k]$, and then checks whether other simulating processor p_{1-i} has not yet written its suggestion $SQ^{1-i}_j[k]$

- Let $F^i_j[k]$ be the boolean (or \perp) result of p_i’s check. If
 - $F^i_j[k] = \text{true}$ and $F^{1-i}_j[k] = \text{false}$ then winner is p_i
 - If $F^i_j[k] = \text{false}$ and $F^{1-i}_j[k] = \text{false}$ then winner is, say, always p_0
 - The case $F^i_j[k] = \text{true}$ and $F^{1-i}_j[k] = \text{true}$ is impossible by construction (both write before read!)

- Writing before reading each other implements wait-free ordering of events [impossible in message passing!]

182.702 Distributed Algorithms (Prof. Schmid), http://ti.tuwien.ac.at/ecs/teaching/courses/valg) – p. 270/321
Principle of BG Simulation (IV)

Observation 1:
- If $F^i_j[k] = true$, then p_i is always winner
- If simulating processor p_i is fast, in the sense that it sets $F^i_j[k]$ before p_{1-i} writes $SQ_{1-i}^{1-j}[k]$, then $F^i_j[k] = true$

Observation 2:
- If $F^0_j[k] = false$, then winner depends on $F^1_j[k]$
 - winner is p_0 if $F^1_j[k] = false$
 - winner is p_1 if $F^1_j[k] = true$
- p_0 can be blocked from executing further steps for q_j if p_1 crashes after writing $SQ_{j}^{1-n}[k]$ but before assigning $F^1_j[k]$
Principle of BG Simulation (V)

Subtle problem: Non-atomicity of simulated steps of q_j

- The read (of q_ℓ’s state) in a step of the algorithm originally executed by q_j consists of exactly one atomic (zero-time) read.

- The read (of q_ℓ’s state) in a single step of q_j in the simulation involves many read operations (to find the last state h of q_ℓ from $Q_\ell[h]$).

Need to prove linearizability of the simulated execution:

- Given any simulated execution α,
- define linearization points for the simulated reads and writes in α that result in admissible execution β of the original algorithm.
Principle of BG Simulation (VI)

Actual choice of linearization points:

- Write in step k of q_j: Time when winner of k-th step of q_j is determined.
- Read in step k of q_j: Time when winner of k-th step of q_j determined last step h of q_ℓ.

Showing correctness of simulation requires proof that reading last state h of q_ℓ from $Q_\ell[h]$ is consistent with last writing of q_ℓ:

- Happens after writing $Q_\ell[h]$ but before writing $Q_\ell[h + 1]$.
- Follows from Lemma 5.22 in the textbook.
Principle of BG Simulation (VII)

Resulting 2-process consensus algorithm at simulating processors \(p_0, p_1 \):

- Initial configuration of \(q_j \) at \(p_i \) takes \(p_i \)'s input value

- Note: \(q_j \)'s state at \(p_0 \) and \(p_1 \) are different if \(x_0 \neq x_1 \). This does not harm, however, since only one wins

- \(p_i \)'s consensus algorithm terminates if any simulated \(q_j \)'s consensus algorithm terminates

- Result is this \(q_j \)'s output value

This algorithm should be able to tolerate a single crash . . .
Principle of BG Simulation (VII)

Why does this result in an admissible execution for the simulated algorithm?

- Every simulated processor \(q_j \) performs infinitely many steps if both \(p_0 \) and \(p_1 \) are alive
- At most one of \(p_0 \) and \(p_1 \) may crash while it executes some \(q_j \)'s step
- Only this \(q_j \)'s algorithm may block forever, all other \(q_\ell \) with \(\ell \neq j \) execute infinitely many steps on the remaining simulating processor.

Theorem 275. *There is no \(n \) processor consensus algorithm for R/W asynchronous SHM that can tolerate even a single crash failure.*

Proof. See textbook for detailed proofs. \(\square \)
Theorem 276. There is no n processor consensus algorithm for asynchronous message passing systems that can tolerate even a single crash failure.
Theorem 276. There is no n processor consensus algorithm for asynchronous message passing systems that can tolerate even a single crash failure.

Proof. We again use reduction, by simulating an MP system atop of a SHM system:

- For every ordered pair of processors, there is a single-writer single-reader R/W link register (unbounded range)
- Sender appends new message to prior content of all outbound link registers
- Receiver polls all inbound link registers in round-robin fashion to get new messages
- Additional receive delay does not matter since we are dealing with asynchronous system
Proof. (cont.)

If there was a MP consensus algorithm \mathcal{A} that tolerates a single crash,

- this simulation in conjunction with \mathcal{A} would yield a SHM consensus algorithm that tolerates a single crash
- such a SHM algorithm does not exist \Rightarrow contradiction.

□
Causality
Causality of Events in MP Systems

A single execution ϕ^1, ϕ^2, \ldots imposes a total order of events

- usually not the only possible execution of an algorithm
- loses causality information since it also orders independent events

Consider the space-time diagram of an execution, which

- contains only comp-events (that may send and/or receive messages)
- shows end-to-end delays only, i.e., hides del-events

Example of independent events:

- comp-event ϕ^1_0 at processor p_0 sending message m
- comp-event ϕ^3_2 at processor p_2 sending message m'
Happened-Before Relation (MP)

Event ϕ happens before event ϕ' in execution α, denoted as $\phi \alpha \rightarrow \phi'$, if either

- ϕ and ϕ' are comp-events by the same processor and ϕ occurs before ϕ'
- ϕ is comp-event where message m is sent and ϕ' is comp-event where m is received
- there is some event ϕ'' such that $\phi \alpha \rightarrow \phi''$ and $\phi'' \alpha \rightarrow \phi'$

The happened-before relation

- captures (possible) internal causality
- allows to identify independent (concurrent) events:

$$\phi \parallel_{\alpha} \phi' \iff (\phi \neq \phi') \land (\phi \not\alpha \rightarrow \phi') \land (\phi' \not\alpha \rightarrow \phi)$$
Some more Definitions

Definition 281. Given an execution fragment $\alpha = \text{exec}(C, \sigma)$ [possibly: involving the comp-events only], a permutation π of σ is a **causal shuffle** if

- all processors have the same view: $\sigma|_{p_i} = \pi|_{p_i}$ for all $0 \leq i \leq n - 1$
- a message is received after it is sent in π
Some more Definitions

Definition 281. Given an execution fragment $\alpha = \text{exec}(C, \sigma)$ [possibly: involving the comp-events only], a permutation π of σ is a causal shuffle if

- all processors have the same view: $\sigma|_{p_i} = \pi|_{p_i}$ for all $0 \leq i \leq n - 1$
- a message is received after it is sent in π

Lemma 281. Given some execution fragment $\alpha = \text{exec}(C, \sigma)$,

- any total ordering of the events in σ that is consistent with the happens-before relation of α is a causal shuffle
- for any causal shuffle π of σ, $\alpha' = \text{exec}(C, \pi)$ is an execution fragment that is similar to α (i.e., similar for every processor).
How can Processors Observe Causality?

By timestamping events, using either
- [High-resolution] real-time clocks
- Logical clocks ("Lamport clocks")
- Vector clocks

Real-time and logical clocks
- ensure $\phi \rightarrow \phi' \Rightarrow TS(\phi) < TS(\phi')$
- do not fully capture causality since $TS(\phi) < TS(\phi') \nRightarrow \phi \rightarrow \phi'$
- lack a gap detection property: If $TS(\phi) < TS(\phi')$, is there some ϕ'' with $\phi \rightarrow \phi'' \rightarrow \phi'$?
- Both problems can be solved by using vector clocks
Logical Clocks (1)

Lamport Clocks: Every process maintains an integer variable LT that is used for timestamping events and messages

- Initially, $LT := 0$
- LT is updated in each comp-event ϕ to $LT(\phi)$ as follows:
 - If a message m with timestamp $TS(m)$ is received in ϕ, $LT(\phi) := \max\{LT, TS(m)\} + 1$
 - If no message is received in ϕ, then $LT(\phi) := LT + 1$
 - If message m is sent in ϕ, then m gets timestamp $TS(m) = LT(\phi)$ (after updating)
Logical Clocks (2)

Theorem 284. Let α be an execution and ϕ, ϕ' be two comp-events in α. If $\phi \xrightarrow{\alpha} \phi'$ then $LT(\phi) < LT(\phi')$.
Theorem 284. Let α be an execution and ϕ, ϕ' be two comp-events in α. If $\phi \xrightarrow{\alpha} \phi'$ then $LT(\phi) < LT(\phi')$.

Proof. We only have to check all cases of the happened-before relation:

- If ϕ and ϕ' occur on the same processor, $LT(\phi) < LT(\phi')$ holds since logical time is monotonically increasing at every processor.
- If ϕ sends message m and ϕ' receives m, then $LT(\phi')$ is at least one larger than $LT(\phi)$.
- $LT(\phi) < LT(\phi')$ for events that depend transitively on each other follows from transitivity of $<$.

\Box
Principle Vector Clocks

Employ elaborate timestamps $VC(\phi)$ of event ϕ:

- Reflexive closure \rightarrow_r of happens-before:
 \[\phi \rightarrow_r \phi' \iff (\phi \rightarrow \phi') \vee (\phi = \phi') \]

- Use entire causal past $(\downarrow \phi) = \{\phi' | \phi' \rightarrow_r \phi\}$ of event ϕ as its timestamp $VC(\phi)$

- Encode $VC(\phi)$ as a vector of n integers, the i-th component holding the index c_i of the last comp-event ϕ^c_i at p_i with $\phi^c_i \rightarrow \phi$

Define partial ordering of VC:

- $VC \leq VC' \equiv VC[k] \leq VC'[k]$ for $1 \leq k \leq n$,
- $VC < VC' \equiv (VC \neq VC') \land (VC \leq VC')$,
- VC, VC' incomparable if $(VC \nless VC') \land (VC' \nless VC)$
Implementing Vector Clocks

Every process maintains $VC_i = (c_1, \ldots, c_n)$ [initially $VC_i = (0, \ldots, 0)$] used for timestamping events

- VC_i is updated in each comp-event ϕ_i at p_i to $VC(\phi_i)$:
 - If message m with timestamp $TS(m)$ is received in ϕ_i, then
 - $\forall j \neq i : VC_i(\phi_i)[j] := \max\{VC_i[j], TS(m)[j]\}$
 - $VC_i(\phi_i)[i] := VC_i[i] + 1$ (could also use \max here)
 - if no message is received in ϕ_i, then
 - $VC_i(\phi_i)[i] := VC_i[i] + 1$
 - if message m is sent in ϕ_i, then m is timestamped with $VC_i(\phi_i)$ (after updating)

- Abbreviate $VC(\phi) = VC_i(\phi)$, where p_i is the processor where ϕ occurs
Properties Vector Clocks (I)

Basic properties:

- $VC_i(\phi_i)[i]$ holds number of events at p_i up to and including ϕ_i
- $VC_i(\phi_i)[j], j \neq i$, holds
 - the number of events at p_j that causally precede ϕ_i
 - the index $VC_j(\phi_j)[j]$ of the last event ϕ_j at p_j that causally precedes ϕ_i
- If $VC_i(\phi_i)[i] > VC_j(\phi_j)[i]$, then $\phi_i \not\rightarrow r \phi_j$
- If $VC_i(\phi_i)[i] \leq VC_j(\phi_j)[i]$, then $\phi_i \rightarrow r \phi_j$ [since VC_j can learn its i-th coordinate only via a chain of messages leading from ϕ_i to ϕ_j]
- $|(\downarrow \phi_i)| = \sum_{j=1}^{n} VC_i(\phi_i)[j]$ is the total number of events that causally precede $\phi_i + 1$ [due to reflexivity].
Properties Vector Clocks (II)

Theorem 288. Let α be an execution and ϕ, ϕ' be two comp-events in α. Vector clocks satisfy the following properties:

- **Strong clock condition:** $\phi \xrightarrow{\alpha} \phi' \iff VC(\phi) < VC(\phi')$

- **Simple strong clock condition (if processors p_i, p_j are known):**
 \[\phi_i \xrightarrow{\alpha} \phi_j \iff VC_i(\phi_i)[i] \leq VC_j(\phi_j)[i] \]

- **Concurrency:**
 \[\phi \parallel_\alpha \phi' \iff (VC(\phi) \not\leq VC(\phi')) \land (VC(\phi') \not\leq VC(\phi)) \]
 (incomparable vector clock timestamps)

- **Simple concurrency (if the processors p_i, p_j are known):**
 \[\phi_i \parallel_\alpha \phi_j \iff (VC_i(\phi_i)[i] > VC_j(\phi_j)[i]) \land (VC_j(\phi_j)[j] > VC_i(\phi_i)[j]) \]
Proof. The direction $\phi \xrightarrow{\alpha} \phi' \Rightarrow VC(\phi) < VC'(\phi')$ follows easily from applying the definition of VC' to the three cases of the happened-before relation (similar to the proof of the logical clocks).

To show $VC'(\phi) < VC'(\phi') \Rightarrow \phi \xrightarrow{\alpha} \phi'$, we assume $VC'(\phi) < VC'(\phi')$ but $\phi \nrightarrow \phi'$ and distinguish 2 cases:

1. If $\phi' \xrightarrow{\alpha} \phi$, direction \Rightarrow of the strong clock condition (see above) reveals $VC'(\phi') < VC'(\phi)$, which contradicts our assumption.

2. If $\phi || \phi'$ are concurrent, $\phi = \phi_i$ and $\phi' = \phi_j$ at $p_i \neq p_j$ and $VC'(\phi_i) < VC'(\phi_j)$
 - If $VC'(\phi_i)[i] = \ell$, then $VC'(\phi_j)[i] < \ell$ since otherwise $\phi_i \in (\downarrow \phi_j)$, which contradicts $\phi_i || \phi_j$.
 - Still, $VC'(\phi_j)[i] < \ell = VC'(\phi_i)[i]$ contradicts $VC'(\phi_i) < VC'(\phi_j)$.

Properties Vector Clocks (IV)

Proof. (cont.)

Finally,

- the proof of the simple strong clock condition is a trivial adaption of the above proof
- the concurrency properties are just the negations of the (simple) strong clock condition applied to \((\phi \not\rightarrow \phi') \land (\phi' \not\rightarrow \phi)\).

\[\square\]
Properties Vector Clocks (V)

Weak gap detection property:

- For \(k \neq j \), suppose \(VC_i(\phi_i)[k] < VC_j(\phi_j)[k] \)
- Then, \(\phi_j \) must have seen some event \(\phi_k \) not seen by \(\phi_i \), i.e., \(\phi_k \not\in (\downarrow \phi_i) \) but \(\phi_k \in (\downarrow \phi_j) \)
- Hence, \(VC_i(\phi_i)[k] < VC_j(\phi_j)[k] \) implies that \(\exists \phi_k \) such that \(\neg (\phi_k \xrightarrow{\alpha} \phi_i) \land (\phi_k \xrightarrow{\alpha} \phi_j) \)

Weak gap detection property does not allow to conclude \(\phi_i \xrightarrow{\alpha} \phi_k \xrightarrow{\alpha} \phi_j \) in general

- **BUT:** If \(i = k \), i.e., \(\phi_k := \phi'_i \), we have \(\neg (\phi'_i \xrightarrow{\alpha} \phi_i) \Rightarrow \phi_i \xrightarrow{\alpha} \phi'_i \). Hence, \(\phi_i \xrightarrow{\alpha} \phi'_i \xrightarrow{\alpha} \phi_j \)!

Consequently, if \(VC_i(\phi_i)[i] < VC_j(\phi_j)[i] \) for \(i \neq j \), then some event from \(p_i \) is still missing at \(p_j \).
Causally Ordered Broadcast (I)

Implement causal broadcast primitive atop layered message passing process model. At p_i:

- Top interface: bc-$send_i(M)$ and bc-$recv_i(M, j)$
- Bottom interface: $send_i(M, j)$ and $recv_i(M, j)$

Basic idea:

- Timestamp messages with $V C_i$ of sender process p_i
- Before a message M_j with timestamp V (received via $recv_i(M_j, j)$ from sender $p_j \neq p_i$) is delivered (by triggering bc-$recv_i(M_j, j)$): Check whether there is a causally preceding message still in transit
- Use weak gap detection property: Call bc-$recv_i(M, j)$ if $V C_i[\ell] \geq V[\ell]$ for all $\ell \neq j$, and $V C_i[j] = V[j] - 1$
Causally Ordered Broadcast (II)

Implementation details:

- Maintain “special-purpose” VC_i at p_i, where
 - only bc-$recv_i(M, i) [= bc$-$send_i(M)!]$ increments $VC_i[i]$
 - only bc-$recv_i(M, j)$ increments $VC_i[j]$

- Timestamp messages with VC_i at sender p_i before sending via bottom layer interface

- Maintain a set of pending messages received via the bottom layer interface but not yet delivered
Pseudo-Code Causally Ordered Broadcast

Code for processor \(p_i \), \(0 \leq i \leq n - 1 \):

1. \(VC := (0, \ldots, 0) \); \(pending := \emptyset \) /* Initialization */

2. When \(bc\text{-}send(M) \) occurs:
 3. \(VC[i] := VC[i] + 1 \) // Increment own component \(i \)
 4. trigger \(bc\text{-}recv(M, i) \) // local bc delivery
 5. trigger \(send(\langle M, VC, i \rangle) \) to every \(j \neq i \)

6. When \(recv(\langle M_j, V, j \rangle) \) occurs:
 7. \(pending := pending \cup \{ \langle M_j, V, j \rangle \} \)

8. When \((\langle M_j, V, j \rangle \in pending) \) where
 9. \((V[j] = VC[j] + 1) \land (\forall \ell \neq i, j : V[\ell] \leq VC[\ell])\)
 10. \(pending := pending \setminus \{ \langle M_j, V, j \rangle \} \)
 11. \(VC[j] := V[j] \) Increment remote component \(j \)
 12. trigger \(bc\text{-}recv(M_j, j) \) // bc delivery
A Note on External Causality

Consider three processes p_0, p_1, p_2 in a distributed control system for a steam pipe:

- p_0 detects “pipe rupture” and sends message m to p_2
- p_1 detects “pressure drop” in pipe and sends alarm message m'
- p_2 gets m' and decides to apply heat, before it gets m

Happened-before relation captures internal causality only:

- Actual message delivery m', m indicates “pressure drop” \rightarrow “apply heat” \rightarrow “pipe rupture”
- In reality “pipe rupture” \rightarrow “pressure drop” due to external causality \Rightarrow delivery order should have been m, m'.
Vector Clocks Memory Complexity

Vector clocks are powerful, but

- quite expensive in terms of memory overhead \(O(n) \)
- Question: Can we do better?
Vector Clocks Memory Complexity

Vector clocks are powerful, but quite expensive in terms of memory overhead $O(n)$.

Question: Can we do better?

We will prove that, in order to capture causality,

- a vector with n entries is mandatory
- a smaller vector would fail in some executions

We consider the following simple execution . . .
Consider execution α where every process p_i, $0 \leq i \leq n - 1$, sends a single message to all other processors except p_{i-1} (taken mod n), all having the same delay.

- messages sent one-by-one, to processors with increasing indices $p_i+1, p_i+2, \ldots, p_i-2$

- messages from other processors are received one-by-one,
 - from processors with decreasing indices $p_{i-1}, p_{i-2}, \ldots, p_i+2$
 - only after all messages have been sent by p_i

Let a_i denote p_i’s first send event and b_i the last receive event.
Lemma 298. For every p_i, $0 \leq i \leq n - 1$, in execution α, we have

1. $a_{i+1} \parallel^\alpha b_i$

2. $a_{i+1} \xrightarrow{\alpha} b_j$ for every $j \neq i$
Lemma 298. For every p_i, $0 \leq i \leq n - 1$, in execution α, we have

- $a_{i+1} ||_\alpha b_i$
- $a_{i+1} \overset{\alpha}{\rightarrow} b_j$ for every $j \neq i$

Proof. From the construction of α, it is immediately apparent that

- there is no transitive causality, since all messages are sent before any message is received
- $a_{i+1} ||_\alpha b_i$ follows since p_{i+1} does not send a message to p_i
- $a_{i+1} \overset{\alpha}{\rightarrow} b_j$ holds, since both a_{i+1} and b_j occur on the same processor in case of $j = i + 1$
- otherwise, a message is sent by p_{i+1} to p_j at or after event a_{i+1}, which is received by p_j at or before b_j
Theorem 299. If VC is a function that maps every event in α to a k-dimensional real vector in a manner that captures causality, then $k \geq n$.
VC Memory Complexity Lower-Bound (III)

Theorem 299. If VC is a function that maps every event in α to a k-dimensional real vector in a manner that captures causality, then $k \geq n$.

Proof. Fix some i. Since $a_{i+1} \parallel \alpha b_i$ by the previous lemma,

- $VC(a_{i+1}) \not< VC(b_i)$ and $VC(b_i) \not< VC(a_{i+1})$

 $\Rightarrow \exists r$ such that $VC(b_i)[r] < VC(a_{i+1})[r]$

Denoting $r = \ell(i)$,

- we have defined a function $\ell : \{0, \ldots, n - 1\} \rightarrow \{0, \ldots, k - 1\}$
- we show $k \geq n$ by showing that ℓ is one-to-one.

\square
Proof. (cont.)

Assume, by way of contradiction that ℓ is not one-to-one,

- there must be two indices i, j with $\ell(i) = \ell(j) = r$, satisfying

 \[VC(b_i)[r] < VC(a_{i+1})[r] \text{ and } VC(b_j)[r] < VC(a_{j+1})[r] \]

By the previous lemma, $a_{i+1} \xrightarrow{\alpha} b_j$ for every $j \neq i$, so

- $VC(b_i)[r] < VC(a_{i+1})[r] \leq VC(b_j)[r] < VC(a_{j+1})[r]$.

- Since $a_{j+1} \xrightarrow{\alpha} b_i$ as well, we should rather have

 \[VC(a_{j+1})[r] \leq VC(b_i)[r] \]

\Rightarrow Contradiction.

\square
Applications like
- distributed monitoring & debugging
- global predicate evaluation
need to access the global system state, e.g. for
- displaying some distributed data when hitting a breakpoint
- computing some expression involving distributed data.

Problem with asynchronous systems:
- Concurrency does not allow instantaneous snapshot of global state
- What can we do?
Global State of a Distributed Computation (II)

Cut $\vec{C} = (c_0, \ldots, c_{n-1})$ of a distributed computation:

- Made up of initial prefixes $\phi^{c_i}_i$, of size c_i, of all p_i’s events
- Frontier of \vec{C} is $(\phi^{c_0}_0, \phi^{c_1}_1, \ldots, \phi^{c_{n-1}}_{n-1})$
- Global state $\Sigma\vec{C} = \Sigma^{c_0, \ldots, c_{n-1}}$ defined by \vec{C} is $(q^{c_0}_0, q^{c_1}_1, \ldots, q^{c_{n-1}}_{n-1})$, where $q^{c_i}_i$ is p_i’s state after $\phi^{c_i}_i$.
Global State of a Distributed Computation (II)

Cut $\vec{C} = (c_0, \ldots, c_{n-1})$ of a distributed computation:

- Made up of initial prefixes ϕ^c_i, of size c_i, of all p_i’s events

- Frontier of \vec{C} is $(\phi^c_0, \phi^c_1, \ldots, \phi^c_{n-1})$

- Global state $\Sigma\vec{C} = \Sigma^{c_0, \ldots, c_{n-1}}$ defined by \vec{C} is $(q^c_0, q^c_1, \ldots, q^c_{n-1})$, where q^c_i is p_i’s state after ϕ^c_i.

\vec{C} could involve local states q^c_i and q^c_j, where

- q_j has been sampled so late after sampling q_i that it causally depends on the $c_i + 1$-st event at p_i

\Rightarrow q_i and q_j contain data never seen simultaneously in the real execution

\Rightarrow inconsistent snapshot of distributed data.
Consistent Cuts

A cut \vec{C} is consistent if $\phi_{i+1}^{C_i} \not\rightarrow \phi_j^{C_j}$ for $0 \leq i, j \leq n - 1$.

Equivalent definitions:

- all messages received inside \vec{C} are also sent from within \vec{C}
- $\forall e \in \vec{C}, \forall e' \rightarrow r e \Rightarrow e' \in \vec{C}$ (left-closure)
- $\forall e \in \vec{C} : VC(e) \leq \vec{C}$
Consistent Cuts

A cut \vec{C} is consistent if $\phi_{i+1}^{c_i} \not\rightarrow \phi_j^{c_j}$ for $0 \leq i, j \leq n - 1$.

Equivalent definitions:

- all messages received inside \vec{C} are also sent from within \vec{C}
- $\forall e \in \vec{C}, \forall e' \rightarrow_r e \Rightarrow e' \in \vec{C}$ (left-closure)
- $\forall e \in \vec{C} : VC(e) \leq \vec{C}$

Lemma 303. A cut \vec{C} is consistent if $VC(\phi_i^{c_i})[i] \geq VC(\phi_j^{c_j})[i]$, $1 \leq i, j \leq n$.
Consistent Cuts

A cut \vec{C} is consistent if $\phi^{c_{i+1}}_i \not\rightarrow \phi^{c_j}_j$ for $0 \leq i, j \leq n - 1$.

Equivalent definitions:

- all messages received inside \vec{C} are also sent from within \vec{C}
- $\forall e \in \vec{C}, \forall e' \rightarrow_r e \Rightarrow e' \in \vec{C}$ (left-closure)
- $\forall e \in \vec{C}: VC(e) \leq \vec{C}$

Lemma 303. A cut \vec{C} is consistent if $VC(\phi^{c_i}_i)[i] \geq VC(\phi^{c_j}_j)[i]$, $1 \leq i, j \leq n$.

Proof. The simple strong clock condition yields

$\phi^{c_{i+1}}_i \not\rightarrow \phi^{c_j}_j \Leftrightarrow VC(\phi^{c_{i+1}}_i)[i] = VC(\phi^{c_i}_i)[i] + 1 > VC(\phi^{c_j}_j)[i]$. ■
Lattice of Consistent Global States

Lattice of all consistent global states of a distributed computation:

- Global states reachable in a given asynchronous computation
- Generated by all causal shuffles, which correspond to different paths in the lattice
Finding Maximum Consistent Cut

Suppose we are given some arbitrary cut \(\vec{C}' = (c'_0, \ldots, c'_{n-1}) \).

Simple vector clock algorithm to determine (unique) maximal consistent cut \(\vec{C} \) preceding \(\vec{C}' \):

- Every \(p_i \) starts out from \(c_i = c'_i \), backwards in his event sequence, until \(VC(\phi_i^{c_i}) \leq \vec{C}' \) [or \(c_i = 0 \) if there is none]

- \(\vec{C} = (c_0, \ldots, c_{n-1}) \) made up of those \(c_i \)'s is the sought maximum consistent cut

- Proof of correctness is left as an exercise.
Chandy & Lamport Snapshot Algorithm (I)

Constructs consistent cut on-the-fly.

Prerequisites:
- FIFO links
- Only a single message received per comp-event
- Processor p_0 initiates the snapshot algorithm, by sending itself a special snapshot message

Achieved properties:
- Algorithm records consistent global state (q_0, \ldots, q_{n-1})
- Constructs also channel state $\chi_{j,i}$ of link from p_j to p_i (= messages sent by p_j before its snapshot that arrive after p_i’s snapshot)
Algorithm for processor p_i, $0 \leq i \leq n - 1$:

1. On reception of the first snapshot-message (from process p_f)
 - record own state q_i
 - relay snapshot-message to all p_j, $j \neq i$
 - set p_f’s channel state $\chi_{f,i} = \emptyset$
 - set p_j’s channel state $\chi_{j,i} = \emptyset$ and start recording messages from p_j in $\chi_{j,i}$

2. On reception of additional snapshot-message from process p_s
 - stop recording messages in $\chi_{s,i}$
Theorem 308. The Chandy & Lamport algorithm constructs a consistent cut and the appropriate channel state.
Theorem 308. The Chandy & Lamport algorithm constructs a consistent cut and the appropriate channel state.

Proof. Consistent cut \vec{C} delivered, since otherwise $\exists i, j : \phi_{j+1}^{c_j} \rightarrow \phi_{i}^{c_i}$

- \exists chain of messages starting outside \vec{C} (at p_j) and ending inside (at p_i) $\Rightarrow \exists$ message m sent outside \vec{C} and received inside
- \Rightarrow Contradiction, since m has been sent after snapshot-message, so must arrive after the snapshot messages by the FIFO property \Rightarrow should be outside the cut.

Correct channel state delivered:
- Only messages sent before collecting p_s’s state recorded in $\chi_{s,i}$, since otherwise p_i would have got p_s’s snapshot-message earlier
- Only a message received after collecting p_i’s state (but before getting snapshot-message from p_s) is recorded
Clock Synchronization
Hardware Clocks

Extend processor p_i by local hardware clock $H C_i$

- $H C_i : t \to T$ maps real-time t to clock time T
- $H C_i(t)$ available to p_i’s transition function
- Sequence of clock readings for p_i’s events must be
 - monotonically increasing
 - unbounded for infinite sequences

Many conceivable clocks, with different quality:

- Ideal clocks: $H C_i(t) = t$
- Clocks with drift ρ:
 \[(t_2 - t_1)(1 - \rho) \leq H C_i(t_2) - H C_i(t_1) \leq (t_2 - t_1)(1 + \rho)\]
- Simple counters: $H C_i(t) = \#\text{comp}_{i}\text{-events executed by } t$
Shifting of Timed Executions

We consider timed executions of systems with drift-free clocks $HC_i(t) = t + c_i$, with unknown constant offset c_i:

- Hardware clock readings $HC_i(t_i^k) = t_i^k + c_i$ must be consistent with occurrence real-times t_i^k of events ϕ_i^k.
- No message deliver event occurs before its send event.

Shift $\alpha' = shift(\alpha, \vec{x})$ of a timed execution α by some $\vec{x} = (x_0, \ldots, x_{n-1})$:

- Shift all events ϕ_i^k, $k \geq 1$, of p_i in real-time by x_i.
- Event ϕ_i^k occurring at t_i^k in α occurs at $t_i^{k'} = t_i^k + x_i$ in α'.
 - Requires $HC_i'(t_i^{k'}) = HC_i'(t_i^k + x_i) = HC_i(t_i^k)$.
 - Only allowed if no message delivered before sent.
Lemma 312. Let α be a timed execution and $\alpha' = \text{shift}(\alpha, \vec{x})$ for shifting vector \vec{x}, in case of $HC_i(t) = t + c_i$. Then, for any $0 \leq i, j \leq n - 1$,

- $HC'_i(t) = HC_i(t) - x_i$ (shift right \Rightarrow HC' behind at same time)
- every message from p_i to p_j with delay δ in α has delay $\delta' = \delta - x_i + x_j$ in α'
Lemma 312. Let α be a timed execution and $\alpha' = \text{shift}(\alpha, \vec{x})$ for shifting vector \vec{x}, in case of $HC_i(t) = t + c_i$. Then, for any $0 \leq i, j \leq n - 1$,

- $HC'_i(t) = HC_i(t) - x_i$ (shift right $\Rightarrow HC'$ behind at same time)
- every message from p_i to p_j with delay δ in α has delay $\delta' = \delta - x_i + x_j$ in α'

Proof. The first statement follows from

- $HC_i(t) = T = HC'_i(t + x_i)$ by definition
- $HC'_i(t + x_i) = HC'_i(t) + x_i$ by the no drift assumption.

For the second statement, consider message m sent by p_i at real-time t^s and received by p_j at time t^r in α; it has delay $\delta = t^r - t^s$. In α',

- sending occurs at real-time $t^s + x_i$ and reception occurs at $t^r + x_j$
- the delay is $\delta' = t^r + x_j - t^s - x_i = \delta - x_i + x_j$ as asserted.
The Clock Synchronization Problem

Adjusted clock $AC_i(t) = HC_i(t) + adj_i(t)$ of p_i:

- Hardware clock HC_i cannot be manipulated by p_i
- State variable adj_i that can be used to adjust the clock

Properties clock synchronization algorithm with skew ϵ (and no failures): In every admissible execution.

- every processor terminates by some time t_f
- $|AC_i(t) - AC_j(t)| \leq \epsilon$ for $t \geq t_f$ and every pair of processors p_i, p_j

Some additional definitions:

- Precision π such that $|AC_i^{[-1]}(T) - AC_j^{[-1]}(T)| \leq \pi$
- Message delays $\delta \in [d - u, d]$, with uncertainty u
The 2-Processor Case

Very simple approach for synchronizing p_1’s clock to p_0’s:

- p_0 sets $adj_0 = 0$ and sends $T_0 = AC_0(t_0) = HC_0(t_0)$ to p_1 at real-time t_0
- p_1 sets $AC_1(t_1) := T_0 + d - u + X$ at the real-time $t_1 \in [t_0 + d - u, t_0 + d]$ when it gets p_0’s message
- clearly, $AC_0(t_1) = T_0 + (t_1 - t_0) \in T_0 + d - u + [0, u]$

Resulting skew $\epsilon = AC_0(t_1) - AC_1(t_1) \in [-X, u - X]$, which is $\epsilon = u/2$ when choosing $X = u/2$

We will show that one cannot do better. In what follows,

- let t be any time after termination
- abbreviate $AC_i(t)$ by AC_i, $AC_i'(t)$ by AC_i'', etc.
2-Processor Lower Bound $\varepsilon \geq u/2$

Theorem 315. Any 2-processor clock synchronization algorithm \mathcal{A} has a skew ε of at least $u/2$.
2-Processor Lower Bound $\epsilon \geq u/2$

Theorem 315. Any 2-processor clock synchronization algorithm \mathcal{A} has a skew ϵ of at least $u/2$.

Proof. Consider admissible timed execution α, where

- all messages $p_0 \rightarrow p_1$ have delay $d - u$, all messages $p_1 \rightarrow p_0$ have delay d
- Since \mathcal{A} has skew ϵ, $AC_0 \geq AC_1 - \epsilon$

Now consider $\alpha' = shift(\alpha, \vec{x})$ for $\vec{x} = (-u, 0)$:

- α' is admissible, and $AC'_1 \geq AC'_0 - \epsilon$ since \mathcal{A} has skew ϵ
- By the shifting lemma, $AC'_0 = AC_0 + u$ and $AC'_1 = AC_1$, which implies $AC_1 \geq AC_0 + u - \epsilon$

Putting the blue inequalities together, we obtain $AC_0 \geq AC_0 + u - 2\epsilon$ and hence $2\epsilon \geq u$. \hfill \square
Lemma 316. Consider any admissible timed execution α of a clock synchronization algorithm with skew ϵ, where all messages $p_i \rightarrow p_j$ have delay $d - u$ and all messages $p_j \rightarrow p_i$ have delay d (for $i < j$). For every $1 \leq k \leq n - 1$, $AC_{k-1} \leq AC_k - u + \epsilon$.
Lemma 316. Consider any admissible timed execution α of a clock synchronization algorithm with skew ϵ, where all messages $p_i \rightarrow p_j$ have delay $d - u$ and all messages $p_j \rightarrow p_i$ have delay d (for $i < j$). For every $1 \leq k \leq n - 1$, $AC_{k-1} \leq AC_k - u + \epsilon$.

Proof. Fix any k and consider $\alpha' = shift(\alpha, \vec{x})$ where $x_i = -u$ for $0 \leq i \leq k - 1$ and $x_i = 0$ otherwise.

- α' is admissible since any message from $p_i \rightarrow p_j$ (resp. $p_j \rightarrow p_i$) for $i < j$ has
 - delay $d - u$ (resp. d), as in α, if $j \leq k - 1$ or $i \geq k$
 - delay d (resp. $d - u$) if $i \leq k - 1 < j$

- $AC'_{k} \geq AC'_{k-1} - \epsilon$ since A has skew ϵ

By the shifting lemma, $AC'_{k-1} = AC_{k-1} + u$ and $AC'_k = AC_k$, which implies $AC_k \geq AC'_{k-1} + u - \epsilon$ as asserted.
Theorem 317. Any n-processor clock synchronization algorithm A has a skew ϵ of at least $u\left(1 - \frac{1}{n}\right)$.

n-Processor Lower Bound $\epsilon \geq u\left(1 - \frac{1}{n}\right)$
Theorem 317. Any n-processor clock synchronization algorithm \mathcal{A} has a skew ϵ of at least $u(1 - \frac{1}{n})$.

Proof. Consider an admissible timed execution α, where for $i < j$:
- all messages $p_i \rightarrow p_j$ have delay $d - u$
- all messages $p_j \rightarrow p_i$ have delay d

From preparation lemma, we know that $AC_{k-1} \leq AC_k - u + \epsilon$ for any $1 \leq k \leq n - 1$. Hence,

- $AC_0 \leq AC_1 - u + \epsilon \leq AC_2 - 2u + 2\epsilon \leq \cdots$
- $\leq AC_{n-1} - (n - 1)(u - \epsilon)$

In addition, by skew ϵ of \mathcal{A}, $AC_{n-1} \leq AC_0 + \epsilon$

$\Rightarrow AC_{n-1} \leq AC_{n-1} - (n - 1)u + n\epsilon$, from where the theorem follows.
We will now show that the lower bound $\epsilon \geq u(1 - 1/n)$ is tight.

Pseudo-code Algorithm 20 for p_i, $0 \leq i \leq n - 1$:

1. Initially $d[i] = 0$

At first computation step:

2. send $HC(t)$ to all processors

On receiving message containing T from p_j:

3. $d[j] := T + d - u/2 - HC(t)$

4. if message has been received from all processors then

5. $adj := \frac{1}{n} \sum_{k=0}^{n-1} d[k]$
Theorem 319. The simple \(n \)-processor clock synchronization algorithm has a skew \(\epsilon \leq u(1 - \frac{1}{n}) \).
Theorem 319. The simple n-processor clock synchronization algorithm has a skew $\epsilon \leq u(1 - \frac{1}{n})$.

Proof. Consider any admissible timed execution α, and abbreviate $HC_i = HC_i(t)$ for some time t after termination. From the simple 2-processor case, we know:

- $HC_i + d_i[j] = HC_j + err_i^j$ with $-u/2 \leq err_i^j \leq u/2$
- $HC_i + d_i[k] - HC_j - d_j[k] = err_i^k - err_j^k$ with $-u \leq err_i^k - err_j^k \leq u$

We proceed by evaluating

$$D = |AC_i - AC_j| = \left| HC_i + \frac{1}{n} \sum_{k=0}^{n-1} d_i[k] - HC_j - \frac{1}{n} \sum_{k=0}^{n-1} d_j[k] \right|$$
Simple \(n \)-Proc. Clock Synchronization (III)

Proof. (cont.)

Some algebra yields

\[
D = \frac{1}{n} \left| HC_i - HC_j - d_j[i] + HC_i + d_i[j] - HC_j \right|
+ \sum_{k=0, k \neq i, j}^{n-1} \left| HC_i + d_i[k] - HC_j - d_j[k] \right|
\]

\[
= \frac{1}{n} \left| -err_j^i + err_i^j + \sum_{k=0, k \neq i, j}^{n-1} (err_i^k - err_j^k) \right|
\]

\[
\leq \frac{1}{n} \left[u/2 + u/2 + (n - 2)u \right] = u \left(1 - \frac{1}{n} \right).
\]

□
Simple \(n \)-Proc. Clock Synchronization (III)

Proof. (cont.)

Some algebra yields

\[
D = \frac{1}{n} \left| H C_i - H C_j - d_j[i] + H C_i + d_i[j] - H C_j \right|
\]

\[
+ \sum_{k=0, k \neq i,j}^{n-1} \left| H C_i + d_i[k] - H C_j - d_j[k] \right|
\]

\[
= \frac{1}{n} \left| -err^j_i + err^i_j + \sum_{k=0, k \neq i,j}^{n-1} (err^k_i - err^k_j) \right|
\]

\[
\leq \frac{1}{n} \left[u/2 + u/2 + (n - 2)u \right] = u \left(1 - \frac{1}{n} \right).
\]

\(\square \)
The End (Basics)