182.073 Verteilte Algorithmen

SS 2008

Prof. Ulrich Schmid

http://ti.tuwien.ac.at/ecs/teaching/courses/valg

Technische Universität Wien
Institut für Technische Informatik
Embedded Computing Systems Group (E182/2)
Short Introduction to Distributed Computing
Lamport’s definition of a distributed system:

“You know you have one when the crash of a computer you’ve never heard of stops you from getting any work done.”
Facts (II)

Spatially distributed computing systems are ubiquitous nowadays:

- The Internet
- PCs connected via a LAN
- Networked embedded systems
- Shared-memory multiprocessor machines
- Systems-on-Chip

Increasing dependence of our society on correct operation of such systems

Reasoning about distributed systems is important
Distributed Systems Dilemma

In theory, distributed systems offer

- increased reliability/availability
- increased performance
- scalability
Distributed Systems Dilemma

In theory, distributed systems offer
- increased reliability/availability
- increased performance
- scalability

In practice, building up distributed systems is notoriously difficult:
- Heterogeneity of HW & SW
- Lacking adherence to standards
- System size and complexity
Distributed Systems Dilemma

In theory, distributed systems offer
- increased reliability/availability
- increased performance
- scalability

In practice, building up distributed systems is notoriously difficult:
- Heterogeneity of HW & SW
- Lacking adherence to standards
- System size and complexity

Is perhaps something more fundamental behind this difficulty?
Characteristics of DS

- Multiple processes, on multiple processors, characterized by
 - asynchronous concurrent computations
 - local state
 - work on common goal \Rightarrow need to access (part of) global state

- Processes can only communicate with each other, via
 - message passing
 - shared memory

- Processes may fail without immediate recognition by the rest of the system
Fundamental Problem

Building distributed systems is difficult due to the processes’ uncertainty about the global system state, as caused by

- unknown processor speeds
- varying/unknown communication delays
- partial failures
- interaction with the environment
Fundamental Problem

Building distributed systems is difficult due to the processes’ uncertainty about the global system state, as caused by

- unknown processor speeds
- varying/unknown communication delays
- partial failures
- interaction with the environment

Need distributed algorithms for pivotal services like leader election, mutual exclusion and consensus that

- can live with this uncertainty
- can be proved to work correctly
Course Overview
Paradigm (I)

Attack distributed algorithms from a theoretical perspective:

- Identify and abstract fundamental problems
- State problems precisely
- State system model and failure model precisely
- Design algorithms to solve those problems
- Prove correctness of those algorithms under the system and failure model
- Analyze time/space/message complexity
- Prove impossibility results and lower bounds
Paradigm (II)

Advantages of the theoretical approach:

- Careful specification clarify intent
- Formal-mathematical proofs increase confidence in correctness of implemented algorithms
- Good abstractions can be re-used in multiple contexts
- Inherent limitations are revealed

Granted: Theoretical reasoning cannot replace (but only complement) engineering:

- Theory often deals with high-level specifications, rather than fully implemented algorithms
- Real-world problems are sometimes (still?) out of reach
Course Content (I)

What you will hear about:

- Transition systems
- Computational models
- Failure models
- Correctness proofs and performance analysis of simple distributed algorithms
- Impossibility results and lower bound proofs
Course Content (II)

What you will NOT hear about:

- CSP, CCS and other logic-based and algebraic specifications
- Formal verification
- Development of complex distributed algorithms
- Distributed programming

Some of those topics are covered by other basic courses, like

- Formale Methoden der Informatik
- Computer-Aided Verification
Some Background Info

- **Textbook**: Hagit Attiya, Jennifer Welch: Distributed Computing, Wiley, 2004 (2nd ed.)
- **Prerequisites**: Analysis of algorithms and basic discrete mathematics — will be checked in first quiz!
- **Limited class size**: Actual admission based on
 - Master students [VALG mandatory usually preferred]
 - performance in the first quiz
 - possibly: average grade “Prüfungsfächer” in Bakk
- **Note (1)**: VALG no longer mandatory in Mag SE&IC ⇒ take any other 2-hours SE&IC course instead
- **Note (2)**: VALG now extended to 3.0VU (4.5 ECTS), without changing the lecture part ⇒ No need to re-do the former course
What to Do?

- **5 Homework assignments (45%)**, to be carefully, rigorously and completely worked out by yourself (using \LaTeX)
 - first version, also presented on blackboard in class
 - doubly-blind review of your colleagues’ first versions
 - final version, incorporating the feedback
 - doubly-blind shepherding review of final versions

- **5 Quizzes (40%)**, 15–20 min. each, covering both advance reading and past material (including prerequisites) of current chapter

- **Final exam (15%)**, 30-40 min., a quiz covering the whole content of the course

- Participation in discussions in class
General Rules

- Passing requires $\geq 60\%$ of the achievable maximum
- Presence in class is mandatory
- Advance reading of textbook required — will be checked in quizzes!
- Graduate courses like VALG adhere to “pull-based” learning — you have to obtain all the information you need for doing your work
- All work must be done on your own and written up in your own words; all sources of information must be properly referenced (except textbook and slides)
- Enroll via myTI only after you have successfully passed the first quiz, and subscribe to the VALG news & forum in TUWIS as well
Expected Achievements

Having passed this course, you should

- have improved formal/mathematical skills in general (major rationale of most graduate basic courses, at least in Mag-TI)
- have seen another example of “computer science ⊂ programming”
- have a first basis for own work in this important area

Details see http://ti.tuwien.ac.at/ecs/teaching/courses/valg
Follow-up Courses (I)

Distributed Algorithms for Fault-Tolerant Distributed Real-Time Systems 182.130

- Preparing lectures on some (self-)assigned topic
- Advanced computational models & distributed algorithms
- Real-time scheduling in distributed systems
- Also requires 182.086 Real-Time Scheduling

Distributed Algorithms for Wireless Ad-Hoc Networks 182.118

- Preparing lectures on some (self-)assigned topic
- Graph theory and algorithms
- Topology control, routing, clustering, ...
Follow-up Courses (II)

Scientific Project 182.121

- (Self-)Assigned distributed algorithms project
- Working out a scientific paper + presentation
- Learning about the scientific community in the field

Master thesis, Dissertation
Questions ?
Formal Model (Message Passing)
Network Model

Communications graph, made up of

- \(n \) processors \(p_0, \ldots, p_{n-1} \) (processes)
- processors communicate by sending messages \(m \in \mathcal{M} \)
- up to \(n(n - 1)/2 \) bidirectional point-to-point links
- links considered reliable (in this course)
Processor p_i modeled as state machine $P_i = (Q_i, \Phi_i, I_i, T_i)$

- state set Q_i (possibly infinite)
- set of initial states $I_i \subseteq Q_i$
- set of terminal states $T_i \subseteq Q_i$
- transition function $\Phi_i \subseteq Q_i \times Q_i$ (successor relation)
Processor p_i modeled as state machine $P_i = (Q_i, \Phi_i, I_i, T_i)$

- state set Q_i (possibly infinite)
- set of initial states $I_i \subseteq Q_i$
- set of terminal states $T_i \subseteq Q_i$
- transition function $\Phi_i \subseteq Q_i \times Q_i$ (successor relation)

Transition $(q, \phi, q') \in \Phi_i$ triggered by event ϕ

- only when in state q (enabling condition for ϕ)
- moves p_i to state q'
State Machines Modeling Processors (II)

Transitions typically given in an event-driven pseudo-code and executed
- atomically (= non-interruptable)
- in zero time, but:
- arbitrary event occurrence times ⇒ allows modeling of non-zero execution times
State Machines Modeling Processors (II)

Transitions typically given in an event-driven pseudo-code and executed

- atomically (= non-interruptable)
- in zero time, but:
- arbitrary event occurrence times ⇒ allows modeling of non-zero execution times

Depending on transition relation:

- **Deterministic** state machines: If \((q, \phi, q')\) and \((q, \phi, q'')\) are valid state-transitions, then \(q' = q''\)

- Randomized state machines: Multiple \(q'\) according to some probability distribution
Our Processor States

State Q_i partitioned in $Q_i = L_i \times \text{inbuf}_i[*] \times \text{outbuf}_i[*]$

- “Ordinary” internal state L_i (local memory, registers)
- Received messages: $\text{inbuf}_i[*] = \bigcup_{\ell=0}^{n-1} \text{inbuf}_i[\ell]$
- Messages in transit: $\text{outbuf}_i[*] = \bigcup_{\ell=0}^{n-1} \text{outbuf}_i[\ell]$
- Transition enabling only depends on accessible state $S_i = L_i \cup \text{inbuf}_i[*]$

Transition (q, ϕ, q') involves

- accessible state transitions and/or
- moving messages to/from $\text{outbuf}_i[*]$ and $\text{inbuf}_i[*]$
Example

Transition function of textbook:

- **Computation event** \(\phi_i = \text{comp}(i) \) at \(p_i \): Zero or more messages \(m \in M_\ell \) are added to \(\text{outbuf}_i[\ell] \), for every \(\ell \), and \(p_i \) goes from \(s_i \) to \(s'_i \) [with \(\text{inbuf}_i[*] = \emptyset \)]

- **Deliver event** \(\phi_j = \text{del}(i, j, m) \) at \(p_j \): For some \(m \in \text{outbuf}_i[j] \), move \(m \) from \(\text{outbuf}_i[j] \) to \(\text{inbuf}_j[i] \)

Note:

- Can also model broadcast communication here

- Assuming \(\text{inbuf}_i[*] = \emptyset \) after \(\text{comp}(i) \) requires message reception/processing in computation event following message delivery

- Allows to “simulate” other models (like Tel’s)
System Model (I)

Build global state machine $S = (C, \Phi, I, T)$, by composing all p_i’s state machines

- Global states: Configurations C, I, T
- Global transitions: Φ

Configurations $C = (q_0, q_1, \ldots, q_{n-1})$
- vector of all p_i’s local states
- initial and terminal config. composed from I_i and T_i

Transition $(q, \phi, q') \in \Phi$ triggered by event ϕ
- $\Phi = \bigcup_{i=0}^{n-1} \Phi_i$ is union of all p_i’s transition relations
- a global event $\phi = $ some local event ϕ_i
Note:

- Entire configuration $C' = (q_0, \ldots, q_{n-1})$ only known to omniscient observer
- Every p_i knows only the accessible part s_i of its q_i
Note:

- Entire configuration $C' = (q_0, \ldots, q_{n-1})$ only known to omniscient observer
- Every p_i knows only the accessible part s_i of its q_i

Execution segment $C^0, \phi^1, C^1, \phi^2, C^2, \ldots$ of system S

- sequence of configurations alternating with events
- ending in configuration (if finite)
- every event $\phi^k = \phi^k_i$ occurs at some processor p_i
- at most this p_i changes its state when S moves from C^{k-1} to C^k
System Model (III)

In a particular execution segment $C^0, \phi^1, C^1, \phi^2, C^2, \ldots$

- schedule ϕ^1, ϕ^2, \ldots
- events occur one after the other (totally ordered)
- possibly at the same time
In a particular execution segment $C^0, \phi^1, C^1, \phi^2, C^2, \ldots$

- **schedule** ϕ^1, ϕ^2, \ldots
- events occur one after the other (totally ordered)
- possibly at the same time

Are execution segments unique?
System Model (III)

In a particular execution segment $C^0, \phi^1, C^1, \phi^2, C^2, \ldots$

- schedule ϕ^1, ϕ^2, \ldots
- events occur one after the other (totally ordered)
- possibly at the same time

Are execution segments unique? No:

- In a given configuration C, transitions of several p_i's could be enabled

 \Rightarrow different events ϕ, ϕ' are applicable in C^k

 \Rightarrow successor configuration C' could be either $\phi(C')$ or $\phi'(C')$, depending on which event comes first [depends on scheduling \Rightarrow fairness conditions]
Independence of Events

Theorem 29. Let ϕ_i and ϕ_j be two events at different processors $p_i \neq p_j$ that are both applicable to configuration C'. Then,

- ϕ_i is applicable to $\phi_j(C')$
- ϕ_j is applicable to $\phi_i(C')$
- and the events commute $\phi_i(\phi_j(C')) = \phi_j(\phi_i(C'))$

Proof. Case analysis:

- $\phi_i = \text{comp}(i)$ and $\phi_j = \text{comp}(j)$: Affects $\text{outbuf}_i[*]$ and $\text{outbuf}_j[*]$ only \Rightarrow events independent

- $\phi_i = \text{comp}(i)$ and $\phi_j = \text{del}(x, j, m)$: Since ϕ_j applicable in C', either $x \neq i$ or $m' \neq m$ for m' sent in ϕ_i \Rightarrow events independent

- $\phi_i = \text{del}(x, i, m)$ and $\phi_j = \text{del}(y, j, m')$: Affects $\text{inbuf}_i[x]$ and $\text{inbuf}_j[y]$ only \Rightarrow events independent
Internal Causality

Events can hence only be dependent (= non-commutable) if they occur at the same processor, or

- $\phi_i = \text{comp}(i)$ putting m into $\text{outbuf}_i[j]$ and $\phi_j = \text{del}(i, j, m)$

This induces the system’s internal causality relation (Lamport’s happened before relation)

- Conveniently depicted via an execution’s space-time diagram
- Dealt with in detail in Chapter “Causality and Time” later on
Admissible Executions

Executions are infinite execution segments

- starting with an initial configuration \(C^0 = (q_0^0, \ldots, q_{n-1}^0) \) where \(\forall i : q_i^0 \in I_i \)
- eventually reaching some terminal configuration \(C^K = (q_0^K, \ldots, q_{n-1}^K) \) where \(\forall i : q_i^K \in T_i \)
- every message in transit is eventually delivered
- cont. applicable events eventually occur (fairness)

Note:

- Deterministic processors: Schedule \(\sigma \) + initial config. \(C^0 \) uniquely determine execution \(\text{exec}(C^0, \sigma) \)
- reaching a terminal configuration does not imply finiteness (moves to other terminal configurations!)
System Models
Asynchronous Systems

Our admissible executions fit to distributed system with

1. unbounded (or unknown) but finite transmission delays
2. no real-time clocks
3. no execution speed bounds

Advantages of asynchronous system model:

- Simple semantics (time-free algorithms)
- Easy to port algorithms
- Algorithms withstand unanticipated processor workloads and network congestion

BUT: Not all distributed computing problems have asynchronous solutions
Synchronous Systems (I)

Constrain admissible executions to lock-step round model:
- All processors execute comp-events in lock-step (perfectly synchronized)
- Executions consist of infinitely many rounds

In every round $k \geq 1$:
- Every p_i simultaneously sends its round-k message to (subset of) neighbors [done in $\text{comp}(i)$ of round-$k - 1$]
- all round-k messages in transit are delivered
- Every p_i simultaneously performs a single $\text{comp}(i)$, which both terminates round k and starts round $k + 1$

Initially: $\text{outbuf}_i[*]$ hold round-1 messages
Synchronous Systems (II)

Lock-step round model
- very convenient for analysis
- too far away from reality to be useful in practice?
Synchronous Systems (II)

Lock-step round model

- very convenient for analysis
- too far away from reality to be useful in practice?

No: Lockstep rounds can be simulated in synchronous systems:

1. Known upper bound δ on message transmission delays

2. Availability of real-time clock C_i with bounded drift ρ' at every processor p_i:

$$ (t_1 - t_0)(1 - \rho') \leq C_i(t_1) - C_i(t_0) \leq (t_1 - t_0)(1 + \rho') $$

3. Known lower and upper bound on execution time of a step (state transition)
Synchronous systems allow clocks C_i (and hence inverse clocks $c_i = C_i^{[-1]}$) to be kept \textit{approximately synchronized}:

- $|c_p(T) - c_q(T)| \leq \pi$
- $(T_1 - T_0)(1 - \rho) \leq c_p(T_1) - c_p(T_0) \leq (T_1 - T_0)(1 + \rho)$
How to Simulate Lockstep Rounds? (I)

Synchronous systems allow clocks C_i (and hence inverse clocks $c_{i} = C_i^{-1}$) to be kept approximately synchronized:

- $|c_p(T) - c_q(T)| \leq \pi$
- $(T_1 - T_0)(1 - \rho) \leq c_p(T_1) - c_p(T_0) \leq (T_1 - T_0)(1 + \rho)$

Use local clocks to almost simultaneously start round k at every processor:

- Start round-k at p_i when local clock C_i reads kR
- Choose $R \geq (\pi + \delta)/(1 - \rho)$
Claim: Every round-\(k\) message is received before the first processor starts round \(k + 1\):

\[
\leq \pi \leq \delta
\]
How to Simulate Lockstep Rounds? (III)

Proof:

- Need to show $t_{first}^{k+1} \geq t_{last}^k + \delta$

- Follows from adding t_{first}^k on both sides of

 $$t_{first}^{k+1} - t_{first}^k \geq R(1 - \rho) \geq \pi + \delta \geq t_{last}^k - t_{first}^k + \delta$$

\Rightarrow In synchronous model, this provides

- lockstep rounds w.r.t. clock time

- approximately lockstep rounds w.r.t. real-time
Analysis of Distributed Algorithms
Correctness Proofs (I)

Event trace:
- Sequence of the externally relevant events in an execution
- Subsequence of a schedule

Problem \(\mathcal{P} \) usually modeled as a set of event traces
- \(\mathcal{E}_\mathcal{P} \) denotes the set of correct event traces w.r.t. \(\mathcal{P} \)

Examples:
- Mutual exclusion: No processor may enter the critical section if its predecessor has not left
- Leader election: Eventually, one processor terminates as leader and all others as non-leaders
Correctness Proofs (II)

To prove that a distributed algorithm \mathcal{A} solves problem \mathcal{P}:

- Study the set of event traces $\mathcal{E}_\mathcal{A}$ generated by all admissible executions of a distributed algorithm \mathcal{A}

- Correct solution: $\mathcal{E}_\mathcal{A} \subseteq \mathcal{E}_\mathcal{P}$

- Complete solution: $\mathcal{E}_\mathcal{A}$ contains all “important” event traces in $\mathcal{E}_\mathcal{P}$
Correctness Proofs (II)

To prove that a distributed algorithm A solves problem P:

- Study the set of event traces E_A generated by all admissible executions of a distributed algorithm A
- Correct solution: $E_A \subseteq E_P$
- Complete solution: E_A contains all “important” event traces in E_P

Two different kinds of properties:

- Safety properties
- Liveness properties
Safety and Liveness Properties

Safety properties: “Nothing bad happened yet”

- Violation shows up in finite prefixes of an execution
- Mutual exclusion example: \(\phi_i^{\text{enter}} \) never follows \(\phi_j^{\text{enter}} \) without prior \(\phi_j^{\text{exit}} \)
- Proofs typically use induction
Safety and Liveness Properties

Safety properties: “Nothing bad happened yet”
- Violation shows up in finite prefixes of an execution
- Mutual exclusion example: ϕ^enter_i never follows ϕ^enter_j without prior ϕ^exit_j
- Proofs typically use induction

Liveness properties: “Something good eventually happens”
- Violation may show up in an infinite execution only
- Leader election example: Every processor p_i eventually reaches a terminal state [Note: Need not mean “stop”]
- Proofs typically use norm functions on well-founded sets
Assertion-based Safety and Liveness

Focusses on properties fulfilled by every admissible execution

Assertions:
- Unary relation on configurations
- Predicate $P(C)$ that delivers true or false when applied to C

Consider sequence of configurations reached in some execution of S:
- **Safety property**: Assertion that holds in every reached configuration (\Rightarrow correct solutions)
- **Liveness property**: Assertion that holds in some reached configuration (\Rightarrow complete solutions)
Invariants

We write \(\{ A \} \rightarrow \{ B \} \) if, for each transition \((C, \phi, C')\),

- \(A(C) \Rightarrow B(C') \), i.e.,
- if \(A \) holds before a transition, then \(B \) holds afterwards

Assertion \(A \) is an invariant if

- \(A(C') \) for all \(C \in I \), and
- \(\{ A \} \rightarrow \{ A \} \) (for all reachable configurations)

Theorem 44. *If* \(A \) *is an invariant of system* \(S \), *then* \(A \) *holds for each configuration of each execution of* \(S \). [Proof by simple induction]

Corollary 44. *Let* \(B \) *be an invariant of system* \(S \) *and assume* \(B \Rightarrow A \) *(for each* \(C \in Q \)). *Then* \(A \) *holds in each configuration of each execution of* \(S \).
Well-Founded Sets and Norm Functions

Partial order [“strikte (= irreflexive) Halbordnung”]
- Set W
- Partial order $<$ of elements of W

A partial order $(W, <)$ is well-founded if
- there is no infinite decreasing sequence $w_1 > w_2 > \cdots$
- Simple example: Tuples of natural numbers with lexical order

Let a system S and assertion A be given. A function $f : C \rightarrow W$ is a norm function if, for each transition (C, ϕ, C')
- $f(C') > f(C'')$ or $A(C')$
Proving Liveness

For assertion A of the liveness property to be proved, define
- termination $T(C) = \text{true}$ iff $C \in T$ is terminal config.
- system S terminates properly if $T \Rightarrow A$ is always true

Theorem 46. If system S terminates properly and a norm function f exists, then A is true in some configuration in each execution of S

Proof. If some admissible execution of S is finite, A holds by proper termination. In an infinite admissible execution, let E be longest execution prefix where A never holds. The existence of f implies that E is finite, so A must hold in the configuration following E.

\[\square\]
Proving Liveness

For assertion A of the liveness property to be proved, define
- termination $T(C) = \text{true}$ iff $C \in T$ is terminal config.
- system S terminates properly if $T \Rightarrow A$ is always true

Theorem 46. If system S terminates properly and a norm function f exists, then A is true in some configuration in each execution of S

Proof. If some admissible execution of S is finite, A holds by proper termination. In an infinite admissible execution, let E be longest execution prefix where A never holds. The existence of f implies that E is finite, so A must hold in the configuration following E. \square

For liveness, we consider only **fair** executions:
- All cont. applicable events must eventually occur
 \Rightarrow Allows restriction of f to specific transitions
Trace-Inclusion-based Safety and Liveness

Alternative to assertion-based correctness proofs

A trace property P is a **safety property** if it is

- **non-empty**: $P \neq \emptyset$ (contains at least empty trace ε)
- **prefix-closed**: Every finite prefix β_i of every event trace $\beta \in P$ is also in P
- **limit-closed**: For every infinite sequence β_1, β_2, \ldots of finite event traces $\beta_i \in P$, with β_i being a prefix of β_{i+1}, the unique limit $\beta = \lim_{i \to \infty} \beta_i$ is also in P
A trace property P is a safety property if it is

- **non-empty**: $P \neq \emptyset$ (contains at least empty trace ϵ)
- **prefix-closed**: Every finite prefix β_i of every event trace $\beta \in P$ is also in P
- **limit-closed**: For every infinite sequence β_1, β_2, \ldots of finite event traces $\beta_i \in P$, with β_i being a prefix of β_{i+1}, the unique limit $\beta = \lim_{i \to \infty} \beta_i$ is also in P

A trace property P is a liveness property if

- Every finite event trace has some infinite extension that is in P
Performance Analysis (I)

Consider terminating algorithms

- reaching terminal configuration
- no messages in transit afterwards

Message complexity:

- Maximum number of messages until termination
- Maximum number of bits sent until termination

Space complexity:

- Maximum number of bits in any processor’s accessible state
Performance Analysis (II)

Consider timed executions

- every event associated with a globally valid timestamp
- timestamps of every \(p_i \)'s events \(\phi^k_i \) are strictly monotonically increasing (without bound)

End-to-end delay \(\tau \) of a message \(m \) sent by \(p_i \) to \(p_j \)

- time from \(\text{comp}(i) \) sending \(m \) to \(\text{comp}(j) \) processing \(m \)
 [recall that processing happens in first comp after del]
- incorporates both computation and communication

Time complexity:

- Synchronous: Number of rounds until termination
- Asynchronous: Maximum termination time if max. \(\tau = 1 \)
A Note on Lower Bounds

Mathematical definition $\Omega(.)$

- $f(n) = \Omega(g(n))$ if there are constants C, n_0 such that $|f(n)| \geq C|g(n)|$ for $n \geq n_0$

- Application to performance measures of distributed algorithms?
A Note on Lower Bounds

Mathematical definition $\Omega(.)$

- $f(n) = \Omega(g(n))$ if there are constants C, n_0 such that $|f(n)| \geq C|g(n)|$ for $n \geq n_0$

Application to performance measures of distributed algorithms?

Two possibilities for lower bounds on complexities:

- **Worst case:** For some algorithm \mathcal{A}, there is some execution E where \mathcal{A} has complexity $C^{wc}(\mathcal{A}) = \Omega(.)$

- **Best case:** For some algorithm \mathcal{A}, the complexity $C^{bc}(\mathcal{A})$ of \mathcal{A} for any execution E is $\Omega(.)$
A Note on Lower Bounds

Mathematical definition $\Omega(.)$

- $f(n) = \Omega(g(n))$ if there are constants C, n_0 such that $|f(n)| \geq C|g(n)|$ for $n \geq n_0$

- Application to performance measures of distributed algorithms?

Two possibilities for lower bounds on complexities:

- **Worst case:** For some algorithm A, there is some execution E where A has complexity $C^{wc}(A) = \Omega(.)$

- **Best case:** For some algorithm A, the complexity $C^{bc}(A)$ of A for any execution E is $\Omega(.)$

We will focus on worst case lower bounds $\min_A C^{wc}(A)$!
Basic Broadcasting Algorithms
Broadcast on a Spanning Tree

Consider distinguished processor p_r that
- has some message M it wants to broadcast
- is root of a given spanning tree T (i.e., every p_i knows its parent and children)

Simple algorithm
- p_r sends M to all its children in T
- every p_i that receives M for the first time from its parent sends M to all its children in T
- processors terminate after having sent M
Pseudo-Code Algorithm 1 (Asynchronous)

1. Initially M is in transit from p_r to all its children

2. Code for p_r:
 3. on receiving no message: // first comp(p_r) event
 4. terminate

5. Code for p_i, $0 \leq i \leq n - 1$, $i \neq r$:
 6. on receiving M from parent:
 7. send M to all children
 8. terminate
State Machine Description Algorithm 1 (I)

Variables $\in L_i$ of processor p_i
- $parent_i$ holds processor index (or nil in case of p_r)
- $children_i$ holds set of processor indices
- $terminated_i$ indicates whether p_i has terminated

Initial state:
- $\forall i : parent_i$ and $children_i$ form spanning tree rooted at p_r
- $\forall i : terminated_i = false$
- $\forall j \in children_r : outbuf_r[j] = M$ and otherwise
 - $\forall i \neq r : outbuf_i[*] = \emptyset$
- $\forall i : inbuf_i[*] = \emptyset$
State Machine Description Algorithm 1 (II)

State transition $\text{comp}(r)$ of p_r:
- Enabling condition: $\text{terminated}_r = \text{false}$
- Action: $\text{terminated}_r := \text{true}$

State transition $\text{comp}(i)$ of p_i, $i \neq r$:
- Enabling condition: $\text{terminated}_i = \text{false}$ and $\text{inbuf}_i[\text{parent}_i] = M$
- Action:
 - Place M into $\text{outbuf}_i[j]$ for every $j \in \text{children}_i$
 - set $\text{inbuf}_i[\text{parent}_i] := \emptyset$
 - set $\text{terminated}_i := \text{true}$
We write synchronous algorithms using a loop over rounds:

Code for processor p_i, $0 \leq i \leq n - 1$, including p_r:

1. /* Initialization */
2. if $p_i = p_r$ then $\text{term} := 1$ else $\text{term} := 0$

3. do forever /* Loop over rounds */
4. if $\text{term} = 1$ then
5. send M to all children
6. $\text{term} := 2$ // that’s it, terminate
7. if $\text{term} = 0$ then
8. if received M from parent then
9. $\text{term} := 1$ // still need to send M!
Analysis of Algorithm 1

The algorithm works correctly in both
- synchronous systems
- asynchronous systems

Complexity:
- Message complexity is $n - 1$, since exactly one M is sent over every edge in the spanning tree T.
- Show: Time complexity for spanning tree with depth d
 - $d = 1$ for $n = 2$ processors, for example
 - exactly d rounds in the synchronous case
 - at most d termination time in the asynchronous case ($\tau = 1$)
Proof Synchronous Case

Lemma 58. Every processor at distance $t \geq 1$ from p_r in T receives M in round t.

Proof. By induction:

- Basis $t = 1$: Since M is initially in transit, every child of p_r receives M in round 1.

- Induction step:
 - Assume that every p_j at distance $t - 1 \geq 1$ receives M in round $t - 1$.
 - Show that every p_i at distance t receives M in round t:
 Applying induction hypothesis to parent p_j of p_i reveals that p_j receives M in round $t - 1$, and hence, by the code, sends M in round $t \Rightarrow p_i$ receives M in round t.

\square
Proof Asynchronous Case

Lemma 59. Every processor at distance \(t \geq 1 \) from \(p_r \) in \(T \) receives \(M \) by time \(t \).

Proof. By induction:

\(\bullet \) Basis \(t = 1 \): Since \(M \) is initially in transit, every child of \(p_r \) receives \(M \) by time 1 since \(\tau = 1 \)

\(\bullet \) Induction step:

\(\bullet \) Assume that every \(p_j \) at distance \(t - 1 \geq 1 \) receives \(M \) by time \(t - 1 \)

Show that every \(p_i \) at distance \(t \) receives \(M \) by time \(t \):

Applying induction hypothesis to parent \(p_j \) of \(p_i \) reveals that \(p_j \) sends \(M \) by time \(t - 1 \Rightarrow p_i \) receives and processes \(M \) by time \(t - 1 + \tau \leq t \)
Broadcast via Flooding

Some processor \(p_r \)
- wants to broadcast message \(M \)
- without a given spanning tree rooted at \(p_r \)

Flooding algorithm:
- Processor \(p_r \) sends \(M \) to all its (direct) neighbors
- Every processor \(p_i \) that receives \(M \) from some \(p_j \) for the very first time sends \(M \) to all its neighbors \(p_l \neq p_j \)

Can be adapted to construct a spanning tree rooted at \(p_r \)
Pseudo-Code Algorithm 2

1. Code for processor p_i, $0 \leq i \leq n - 1$, with neighbors Nb_i

2. VAR $parent := \emptyset$; $children := other := \emptyset$; $term := false$

3. Root p_r only (initial state):
 - $parent := \text{NULL}$
 - M is initially in transit from p_r to all its neighbors Nb_r

4. on receiving M from neighbor p_j:
 - if $parent = \emptyset$ then
 - $parent := p_j$; send $\langle parent \rangle$ to p_j
 - if DONE then $term := true$ else send M to $Nb \setminus \{p_j\}$
 - else send $\langle already \rangle$ to p_j

5. on receiving $m \in \{\langle parent \rangle, \langle already \rangle\}$ from neighbor p_j:
 - if $m = \langle parent \rangle$ then add p_j to $children$
 - else add p_j to $other$

6. if DONE then $term := true$ // must still answer M msgs!

7. Macro DONE := $children \cup other \cup parent = Nb$
Simple Properties (I)

Inspecting the code reveals:

(a) Every processor p_i sends M at most once to every neighbor

(b) No processor p_i sends M to the neighbor p_j from which it got M for the very first time

(c) Processor p_i received M from p_j for the very first time
 $\iff p_i$ replies $\langle \text{parent} \rangle$ to p_j

(d) Processor p_i received M from p_j not for the very first time
 $\iff p_i$ replies $\langle \text{already} \rangle$ to p_j
Correctness of Algorithm 2

We show that:

- The algorithm builds a parent/child relation T (hopefully a spanning tree) that is “locally eventually consistent” (next lemma)
- Every processor eventually terminates, such that the parent/child relation T is eventually
 - **locally consistent:**
 \[\forall j, i \neq r : \text{parent}_i = p_j \iff p_i \in \text{children}_j \]
 - **static:** does not change any more
- The finally constructed graph T is a spanning tree:
 - There is no cycle in T
 - Every p_i is reachable from the root p_r in T
Safety Proof of Algorithm 2 (I)

Lemma 64. In every configuration, the parent/child relation is locally eventually consistent:

\[\forall j, i \neq r : \text{parent}_i = p_j \iff (p_i \in \text{children}_j) \lor (\langle \text{parent} \rangle \in \text{outbuf}_i[j] \cup \text{inbuf}_j[i]) \]

Proof. Trivial invariant induction on subsequent configurations:

If \(\text{parent}_i = p_j \):

- \(\text{parent}_i \) has been set in line 8, where \(\langle \text{parent} \rangle \) is sent to \(p_j \)
- No other message is ever sent to \(p_j \) by the simple properties (b)–(d)
- Either \(\langle \text{parent} \rangle \) is in transit or \(p_j \) has added \(p_i \) to \(\text{children}_j \) in line 12

If \((p_i \in \text{children}_j) \lor (\langle \text{parent} \rangle \in \text{outbuf}_i[j] \cup \text{inbuf}_j[i]) \):

- \(\langle \text{parent} \rangle \) from \(p_i \) is in transit or has already been processed by \(p_j \)
- \(\langle \text{parent} \rangle \) is only sent by \(p_i \) in line 8, where it also sets \(\text{parent}_i := p_j \)
Liveness Proof of Algorithm 2 (I)

Lemma 65. Every process p_j eventually sets $\text{parent}_j \neq \emptyset$.

Proof. Induction on distance k from p_r in communications graph:

- $k = 0$: The root p_r evidently sets $\text{parent}_r = \text{NULL}$ in line 4.
- $k - 1 \rightarrow k$: Assume that all p_i at distance $k - 1 \geq 0$ set $\text{parent}_i \neq \emptyset$ in line 4 or 8, where M is sent to all other neighbors. A process p_j at distance k hence eventually receives M from some p_i and sets $\text{parent}_j := p_i$ in line 8, if it has not already done so.

\[\square\]

Theorem 65. Every processor p_i eventually terminates and constructs a spanning tree T rooted at p_r.

Proof. Since every p_i sets parent_i, it also sends M to all neighbors $\neq \text{parent}_i$ (line 9). By the simple properties (c), (d), they all respond with $\langle \text{parent} \rangle$ or $\langle \text{already} \rangle$. Hence, p_i eventually executes line 14.

\[\square\]
Final Correctness Proof of Algorithm 2 (I)

Proof. (con’t)

Recalling local eventually consistency by Lemma 61, this also implies local consistency. It hence only remains to be shown that the finally constructed T is a spanning tree:

- There is no cycle in T
- Every p_i is reachable from the root p_r in T

Suppose there is a cycle $p_{i_1}, p_{i_2}, \ldots, p_{i_{k+1}}$ with $i_{k+1} = i_1$:

- Let ϕ_l be the first del-event of message M at p_{i_l}
- Parent/child relation obviously requires $\phi_l \rightarrow \phi_{l+1}$
- $\phi_1 \rightarrow \phi_2, \phi_2 \rightarrow \phi_3$ and $\phi_k \rightarrow \phi_{k+1} = \phi_1$ reveals a cycle in the causality relation

\Rightarrow Contradiction
Proof. (con’t)

Suppose p_i is not reachable from p_r in T:

- Parent/child relation was shown to be locally consistent
- Up-stream path starting from p_i could hence either
 - lead to cycle \Rightarrow already shown to be impossible
 - lead to root p_r (which has $parent_r = \text{NULL}$) \Rightarrow contradicts assumption that p_i is not reachable from p_r

\[\square \]

This finally completes the correctness proof of Algorithm 2
Performance Analysis of Algorithm 2

The algorithm constructs a spanning tree \(T \) both in

- synchronous systems
- asynchronous systems

Assume communications graph \(G \) with

- \(n \geq 2 \) processors
- \(n - 1 \leq m \leq \frac{n(n-1)}{2} \) links

- diameter \(D = \max_{x,y \in G} d(x, y) \) where
 \[d(x, y) = \min_{W(x,y) \in G} |W(x, y)| \]
Message Complexity

Theorem 69. *In both synchronous and asynchronous systems, Algorithm 2 has message complexity* $O(m)$

Proof. Algorithm 2 sends M

- twice (once in every direction) over every link $\notin T$
- once over every link $\in T$

\Rightarrow sends total of $2m - (n - 1) \leq (n - 1)^2$ messages M

Every M message is answered by either $\langle \text{parent} \rangle$ or $\langle \text{already} \rangle$

\Rightarrow total of $4m - (2n - 2) \leq 2(n - 1)^2$ messages

□
Theorem 70. In every admissible execution in the synchronous model, Algorithm 2 constructs a BFS tree [where nodes at distance \(d \) in \(G \) are at depth \(d \) in \(T \)] in \(O(D) \) rounds.

Proof. We will show that, at the end of round \(t \geq 1 \),

- the parent\(_i\) variable of every \(p_i \) at distance \(d'_i \leq t \) from \(p_r \) in \(G \) points to a process at distance \(d'_i - 1 \)
- only \(M \) messages sent by processes at distance \(t \) are in transit

This implies:

- \(T \) is BFS tree
- The execution terminates within \(D + 2 \) rounds (one additional round for receiving last \(M \) and for receiving \(\langle already \rangle \) reply)
Synchronous Systems (II)

Proof. (con’t)

Induction:

- Basis $t = 1$:
 - In the initial configuration, $\forall i \neq r : parent_i = \emptyset$ and M is in transit to all neighbors of p_r.
 - \Rightarrow All p_j at distance 1 from p_r get M in round 1, set $parent_j = p_r$, and forward M to their neighbors $\neq p_r$.

- Induction step: Assume that the hypothesis holds for $t - 1 \geq 1$
 - every p_i that receives M in round t is at distance $d' \leq t$.
 - If $d' < t$, p_i has already set $parent_i$ \Rightarrow does not forward M
 - If $d' = t$, p_i did not see M before, hence sets $parent_i$ and forwards M on the very first M as required.
 - Processors at distance $> t$ cannot receive M \Rightarrow do nothing
Theorem 72. In every admissible execution of an asynchronous system, Algorithm 2 constructs a spanning tree within time $O(D)$

Proof. A simple induction proof—left as an exercise—shows that, by time t, the message M reaches all p_i at distance at most t from p_r. □

In asynchronous systems, the spanning tree T

- need not be BFS
- can even be a chain (depth $n - 1$), although $D < n - 1$
Depth-First Search Spanning Tree

The BFS tree construction (Algorithm 3) ensures

- maximum concurrency and hence speed, but
- may connect direct neighbors in G via long paths (via root) in T

Alternative: Depth-first search Algorithm 2.3

- Direct neighbors in G are on path from the root in T
- Recursive pre-order traversal
- Concurrent—but in fact serialized—implementation of recursive DFS algorithm

Theorem 73. Algorithm 3 has time complexity $O(m)$ and message complexity $O(m)$

Proof. See textbook. □
Leader Election in Rings
Motivation

The ability to elect a leader is often useful:

- Programming distributed applications typically easier in master/slave settings:
 - Broadcasting site (using e.g. a spanning tree)
 - Coordinator in distributed transactions
- Handling exceptional situations often requires a leader:
 - Breaking deadlocks
 - Token loss recovery in token rings/buses

Using dynamic rather than static leader election advantageous:

- Allows varying set of processors to choose from
- Allows to re-elect leader in case of leader failure
Definition Leader Election Problem

Terminal states partitioned in (closed) sets of
- elected states
- non-elected states

Safety properties:
- Decision to enter elected vs. non-elected state is irreversible
- At most one processor is in the elected state

Liveness properties:
- Eventually, every processor enters an elected or non-elected state (termination)
- Eventually, some processor enters the elected state
Rings

We consider processors arranged in a ring. Why?

- Simple to analyze
- Abstraction of token ring
- Some lower bounds for rings apply to arbitrary topologies

Oriented rings:

- Processes distinguish left and right neighbor
- Sending message to left neighbor ⇔ clockwise direction
- Sending message to right neighbor ⇔ counter-clockwise direction
Classification of Algorithms for Rings

Direction:
- Unidirectional: Messages sent in one direction only
- Bidirectional: Messages sent in both directions

Avaliability of unique IDs:
- Non-anonymous: Every processor p_i has UID id_i
- Anonymous: Processors are indistinguishable

Knowledge of ring size:
- Non-uniform algorithms: Processors know n
- Uniform algorithms: Same algorithm for every n
Overview of Upcoming Results

Our first impossibility result:
- There is no anonymous leader election algorithm

Some simple leader election algorithms:
- Asynchronous: $O(n^2)$ resp. $O(n \log n)$ messages
- Synchronous: $O(n)$ resp. $O(n \log n)$ messages

First lower bound results:
- Every asynchronous LE algorithm needs $\Omega(n \log n)$ msg’s
- Every synchronous LE algorithm needs $\Omega(n)$ messages if certain tricks are allowed
- $\Omega(n \log n)$ messages otherwise

Lower bounds asymptotically tight: $\Omega \rightarrow \Theta$
Asynchronous Leader Election
Leader Election in Anonymous Rings

Recall: The \(n \)-processor leader election algorithm \(A_i^n \) (including UID) at processor \(p_i \) is called

- uniform if \(A_i^n = A_i^m \) for every ring size \(n, m \)
- anonymous if \(A_i^n = A_j^n \) for every pair of processors \(i, j \)
Leader Election in Anonymous Rings

Recall: The n-processor leader election algorithm A^n_i (including UID) at processor p_i is called

- uniform if $A^n_i = A^m_i$ for every ring size n, m
- anonymous if $A^n_i = A^n_j$ for every pair of processors i, j

Theorem 81. There is no anonymous deterministic leader election algorithm
Leader Election in Anonymous Rings

Recall: The n-processor leader election algorithm A^n_i (including UID) at processor p_i is called

- uniform if $A^n_i = A^n_m$ for every ring size n, m
- anonymous if $A^n_i = A^n_j$ for every pair of processors i, j

Theorem 81. There is no anonymous deterministic leader election algorithm

Proof. By contradiction: We show that there is not even a synchronous non-uniform anonymous anonymous LE algorithm:

- Induction on number of rounds reveals that every p_i sends and receives the same messages

- Electing exactly one leader requires breaking this symmetry \Rightarrow impossible
A Simple Asynchronous LE Algorithm

Every processor p_i, $0 \leq i \leq n - 1$:

- sends its id_i to left neighbor
- on receiving a message with mid from the right neighbor:
 - if $mid > id_i$, forward it to the left (p_i will never be leader)
 - if $mid = id_i$ (got back own message), enter elected state and send termination message
 - if $mid < id_i$, then swallow message
- on receiving termination message from right:
 - if p_i not yet in elected state \Rightarrow forward termination message to the left and enter non-elected state
 - if p_i in elected state \Rightarrow swallow termination message
Correctness of Simple LE Algorithm

Safety and liveness proofs based on:

- Only message from p_i with $id_i = \text{max}$ never swallowed
- Only p_i ever receives a message with $mid = id_i$ from the right and thus enters elected state
- All $p_j \neq p_i$ enter non-elected state via p_i’s termination msg

Detailed proofs left as a simple exercise.
Theorem 84. The simple leader election algorithm has termination time $2n$ and sends $\Theta(n^2)$ messages.
Complexity Analysis of Simple LE Algorithm

Theorem 84. The simple leader election algorithm has termination time $2n$ and sends $\Theta(n^2)$ messages

Proof. The algorithm terminates after a full circulation of both p_i’s message and the termination message, taking time n each.
Complexity Analysis of Simple LE Algorithm

Theorem 84. The simple leader election algorithm has termination time $2n$ and sends $\Theta(n^2)$ messages

Proof. The algorithm terminates after a full circulation of both p_i’s message and the termination message, taking time n each.

Upper bound on message complexity:
- Every of the n processors sends/forwards at most $n + 1$ messages
- \Rightarrow need at most $O(n^2)$ total messages
Theorem 84. The simple leader election algorithm has termination time $2n$ and sends $\Theta(n^2)$ messages.

Proof. The algorithm terminates after a full circulation of both p_i’s message and the termination message, taking time n each.

Upper bound on message complexity:
- Every of the n processors sends/forwards at most $n + 1$ messages
 \Rightarrow need at most $O(n^2)$ total messages

Lower bound on message complexity:
- Consider ring $0, n - 1, n - 2, \ldots, 2, 1$
- The message from p_i is sent/forwarded exactly $i + 1$ times
 \Rightarrow need $n + \sum_{i=0}^{n-1} (i + 1) = \frac{n^2 + 3n}{2} = \Omega(n^2)$ messages

\square
LE Algorithm by Le Lann / Chang & Roberts

Improve the message complexity of our simple algorithm by a more clever ("divide and conquer") forwarding:

- For $\ell \geq 0$, consider 2^ℓ-neighborhood of any p_i
 - p_i itself
 - $2^\ell + 2^\ell$ consecutive processors to the left and right

- Algorithm proceeds in consecutive phases $\ell \geq 0$ (not synchronized) at every processor

- In phase ℓ, p_i checks whether it is leader in its 2^ℓ-neighborhood:
 - If p_i is leader \Rightarrow proceed to next phase
 - Otherwise \Rightarrow get stuck

\Rightarrow Fewer and fewer processors proceed to higher phases
How to Explore 2^ℓ-Neighborhood?

Processor p_i sends $\langle \text{probe}, id, \ell, hop \rangle$ messages to both left and right neighbor

- if p_j receives $\langle \text{probe} \rangle$ with $id > id_j$, it either
 - forwards it in the same direction, with increased hop count (if $hop < 2^\ell$)
 - sends $\langle \text{reply}, id, \ell \rangle$ back in the opposite direction (if $hop \geq 2^\ell$, i.e., end of neighborhood reached)

- if p_j receives $\langle \text{probe} \rangle$ with $id \leq id_j$, it swallows the msg

- if p_j receives $\langle \text{reply} \rangle$ with $id \neq id_j$, it forwards the message in the same direction

\Rightarrow p_i gets back $\langle \text{reply}, id_i, \ell \rangle$ from left and right only if $id_i = \max$ in p_i’s 2^ℓ-neighborhood (and gets stuck otherwise)
Complete LE Algorithm 6

Complete code:

- The above forwarding/swallowing rules +

- Leader termination: A processor that becomes leader in its 2^L-neighborhood with $L = \lceil \log_2(n - 1) \rceil - 1$ (that is, $2^{L+1} + 1 \geq n$)
 - terminates in the elected state [in phase $L + 1$, where it gets own $\langle probe \rangle$ in exploration]
 - sends termination message to the left

- Non-leader termination: A processor not in the elected state that receives a termination message from the right
 - terminates in the not-elected state
 - forwards termination message to the left
Analysis of Algorithm 6

Correctness proof uses same argument as simple LE algorithm

Message and time complexity determined by exploration of 2^ℓ-neighborhood of any p_i:

- $2 \cdot 2^\ell \langle \text{probe} \rangle$ and $2 \cdot 2^\ell \langle \text{reply} \rangle$ messages
- totally $4 \cdot 2^\ell$ messages
- takes at most $2 \cdot 2^\ell$ time since left and right neighborhood explored concurrently

Last fully explored phase is $\ell = L = \lfloor \log_2(n - 1) \rfloor - 1$
Theorem 89. Algorithm 6 has time complexity $O(n)$
Theorem 89. Algorithm 6 has time complexity $O(n)$

Proof. Time complexity determined by the eventual leader p_i

- Explorations of p_i's 2^ℓ-neighborhoods, $0 \leq \ell \leq L$ yields

\[
\sum_{\ell=0}^{L} 2 \cdot 2^\ell = 2(2^{L+1} - 1) = 2(2^{\lceil \log_2(n-1) \rceil} - 1)
\]

\[
\leq 2(2^{\log_2(n-1)+1} - 1) = O(n)
\]

- Additional time $2n$ for termination detection (incomplete exploration by leader) and termination message circulation in phase $L + 1$ already covered by $O(n)$
Lemma 90. The number of processors that are still leaders of their 2^ℓ-neighborhood at the end of phase $\ell \geq 0$ [and thus enter phase $\ell + 1$] is at most $\frac{n}{2^\ell + 1}$

Note: Number of leaders surviving last phase $L = \lceil \log_2(n - 1) \rceil - 1$ is 1 as required, since $n/(2^L + 1) < 2$
Lemma 90. The number of processors that are still leaders of their 2^ℓ-neighborhood at the end of phase $\ell \geq 0$ [and thus enter phase $\ell + 1$] is at most $\frac{n}{2^{\ell+1}}$.

Note: Number of leaders surviving last phase
$L = \lceil \log_2(n - 1) \rceil - 1$ is 1 as required, since $n/(2^L + 1) < 2$

Proof. Two leaders p_i, p_j of their 2^ℓ-neighborhoods can at most share the same left resp. right neighborhood

- at least 2^ℓ processors $\neq p_i, p_j$ in between
- dense packing over the entire ring \Rightarrow at most $n/(2^\ell + 1)$ leaders
Theorem 91. Algorithm 6 sends $O(n \log n)$ messages.
Theorem 91. Algorithm 6 sends $O(n \log n)$ messages

Proof. We know:

- Total number of any active p_i’s exploration messages for its 2^ℓ-neighborhood is $4 \cdot 2^\ell$
- Total number of active p_i’s in phase $\ell > 0$ is at most $n / (2^{\ell-1} + 1)$
- Total number of active p_i’s in phase $\ell = 0$ is n
- Termination detection and termination message circulation adds at most $O(n)$ additional messages

Hence, the total message complexity (including termination) is

$$O(n) + 4n + \sum_{\ell=1}^{L} 4 \cdot 2^\ell \frac{n}{2^{\ell-1} + 1} \leq O(n) + 8nL = O(n \log n)$$
Asynchronous Lower Bound on Messages

We will show that ANY leader election algorithm A that
(a) works in asynchronous rings
(b) is uniform
(c) elects processor mit maximum id
(d) guarantees that every processor learns the id of the leader
has message complexity $\Omega(n \log n)$
We will show that ANY leader election algorithm A that
(a) works in asynchronous rings
(b) is uniform
(c) elects processor mit maximum id
(d) guarantees that every processor learns the id of the leader
has message complexity $\Omega(n \log n)$

Conditions:
- (a) necessary for lower bound to hold, (b) for our proof to work
- (c) and (d) simplify the proof
Reduction

The important principle of reduction can be used to get rid of conditions (c) and (d)

Assume that

- we are given some uniform asynchronous LE algorithm B that does not satisfy (c) and (d)
- with less than $\Omega(n \log n)$ additional messages, we can derive an algorithm A that satisfies (c) and (d) from B

$\Rightarrow B$ must also send $\Omega(n \log n)$ messages, since A derived from B would need less than $\Omega(n \log n)$ otherwise

Note: Converting any B to A needs only $O(n)$ additional messages
We consider open schedules σ, defined as
- schedule σ of some execution prefix of algorithm A
- there is an edge e of the ring such that no message over e is delivered (but maybe sent) in σ
- open schedule can be finite and need not be admissible

Assumptions for our proof:
- n is a power of 2
- the set S of identifiers is an arbitrary subset of the natural numbers
Lemma 95. For \(n = 2 \), any algorithm \(A \) has an open schedule \(\sigma \) where at least \(M(2) = 1 \) messages are delivered.
Lemma 95. For \(n = 2 \), any algorithm \(A \) has an open schedule \(\sigma \) where at least \(M(2) = 1 \) messages are delivered.

Proof. Consider \(p_0 \) and \(p_1 \) where w.l.o.g. \(id_0 > id_1 \).

In any admissible execution \(\alpha \),

- \(p_0 \) must send a message with \(id_0 \) to \(p_1 \) such that it can learn \(id_0 \), as required by condition (d).

- \(\sigma \) is prefix of \(\alpha \) up to and including the first del-event, w.l.o.g. over edge \((p_0, p_1)\)

\[\Rightarrow \] other edge \((p_1, p_0)\) is open and exactly \(M(2) = 1 \) messages are delivered as required.
Lemma 96. For $n > 2$, any algorithm A has an open schedule σ where at least
$M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$ messages are delivered.
Lemma 96. For \(n > 2 \), any algorithm \(A \) has an open schedule \(\sigma \) where at least \(M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1) \) messages are delivered.

Proof. By induction. Basis \(n = 2 \) is provided by previous lemma. Induction step:

- Split identifier set \(S \) into two halves \(S_1 \) and \(S_2 \), assigned to two rings \(R_1 \) and \(R_2 \) of \(n/2 \) processors each.
- Inductive hypothesis:
 - \(R_1 \) has open schedule \(\sigma_1 \) with at least \(M(n/2) \) messages and \(e_1 = (p_1, q_1) \) is open edge
 - \(R_2 \) has open schedule \(\sigma_2 \) with at least \(M(n/2) \) messages and \(e_2 = (p_2, q_2) \) is open edge
- Paste \(R_1 \) and \(R_2 \) together in a big ring \(R \), by replacing \(e_1, e_2 \) by \(e_p = (p_1, p_2) \) and \(e_q = (q_1, q_2) \)
Lower Bound Proof (III)

Proof. (cont.)

Because of uniformity of A:

- Processors in R_1 cannot tell difference to left half of $R \Rightarrow$ same schedule σ_1 also in R
- Processors in R_2 cannot tell difference to right half of $R \Rightarrow$ same schedule σ_2 also in R

Distinguish 2 cases: Without unblocking e_p and e_q,

1. the catenated schedule $\sigma_1 \sigma_2$ can be extended by some schedule σ_3 where additional $\frac{1}{2}(n/2 - 1)$ messages are received
 \[\Rightarrow \] sought open schedule $\sigma = \sigma_1 \sigma_2 \sigma_3$ found and we are done

2. every extension of $\sigma_1 \sigma_2$ leads to a quiescent state

\[\square \]
Proof. (cont.)

Let

1. σ_3 be an extension of $\sigma_1\sigma_2$ that leads to a quiescent state (without unblocking e_p, e_q)
2. σ_4'' be an extension of $\sigma_1\sigma_2\sigma_3$ to an admissible schedule:
 - all processors terminate
 - all messages are delivered on e_p and e_q

Claim: At least $n/2$ messages are sent in σ_4'', since

1. every processor in the half of R that does not contain the leader must get the leader’s id
2. until the beginning of σ_4'', there has been no communication between the two halves
Lower Bound Proof (V)

Proof. (cont.)

Unfortunately, \(\sigma_1 \sigma_2 \sigma_3 \sigma'_4 \) is not open.

Let \(\sigma'_4 \) be prefix of \(\sigma''_4 \) when \(n/2 - 1 \) additional messages have been delivered

- before \(\sigma'_4 \), system was quiescent
- set of processors \(P, Q \) that delivered additional messages can only expand outwards around \(e_p \) and \(e_q \)
- \(P \cap Q = \emptyset \) since less than \(n/2 \) messages have been delivered in \(\sigma'_4 \) and every half consists of at least \(n/2 \) processors
- Assume that majority of the \(n/2 - 1 \) messages have been delivered in \(P \) \(\Rightarrow \) at least \(\frac{1}{2}(n/2 - 1) \) messages

\[\boxed{}\]
Proof. (cont.)

Let σ_4 be the sequence of events of σ'_4 that involve processors in P only.

Claim: In $\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_4$, processors in P behave as in $\sigma_1 \sigma_2 \sigma_3 \sigma''_4$ and hence deliver at least $\frac{1}{2}(n/2 - 1)$ messages, since

- $P \cap Q = \emptyset$ imply that processors in P cannot have heard anything from processors in Q.

- Note: The ability to use σ_4 instead of σ'_4 relies heavily on asynchrony assumption (a).

Hence, in σ,

- e_q can be left open.

- still, at least $2M(n/2) + \frac{1}{2}(n/2 - 1)$ messages are delivered.
Final Lower Bound Proof

We know now that any LE algorithm A delivers at least

- $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$
- $M(2) = 1$

messages in some admissible execution, since it does so in an open schedule.
Final Lower Bound Proof

We know now that any LE algorithm A delivers at least

- $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$
- $M(2) = 1$

messages in some admissible execution, since it does so in an open schedule.

Expanding the definition of $M(n)$ reveals

- $\log_2 n$ terms of order $\Omega(n)$ each
- $M(n) = \Omega(n \log n)$
Final Lower Bound Proof

We know now that any LE algorithm A delivers at least

- $M(n) = 2M(n/2) + \frac{1}{2}(n/2 - 1)$
- $M(2) = 1$

messages in some admissible execution, since it does so in an open schedule.

Expanding the definition of $M(n)$ reveals

- $\log_2 n$ terms of order $\Omega(n)$ each
- $M(n) = \Omega(n \log n)$

This finally confirms our lower bound $\Omega(n \log n)$.
Synchronous Leader Election
Leader Election in Synchronous Rings

In asynchronous systems,

- messages can be arbitrarily delayed
- information can only be disseminated by sending a message
Leader Election in Synchronous Rings

In asynchronous systems,
- messages can be arbitrarily delayed
- information can only be disseminated by sending a message

In synchronous systems,
- messages must arrive by the beginning of the next round
- information can also be disseminated by **not** sending a message ("communication by time")
Leader Election in Synchronous Rings

In asynchronous systems,
- messages can be arbitrarily delayed
- information can only be disseminated by sending a message

In synchronous systems,
- messages must arrive by the beginning of the next round
- information can also be disseminated by not sending a message ("communication by time")

Question: Does this help for solving Leader Election?
Leader Election in Synchronous Rings

In asynchronous systems,
- messages can be arbitrarily delayed
- information can only be disseminated by sending a message

In synchronous systems,
- messages must arrive by the beginning of the next round
- information can also be disseminated by not sending a message ("communication by time")

Question: Does this help for solving Leader Election? YES!
A Synchronous LE Algorithm

We consider
- a unidirectional ring
- a non-uniform algorithm (knows ring size n)

The algorithm:
- Proceeds in a finite (but unbounded) number of consecutive phases $x \geq 0$
- Every phase x consists of n rounds where
 - process p_i with $id_i = x$ sends message containing id_i
 - every p_j that gets message with $id \neq id_j$ forwards message to the left and terminates as a non-leader
 - p_i terminates as the leader when it gets msg $id = id_i$
Properties Synchronous LE Algorithm

The algorithm:
- Elects the processor p_i with minimal id_i as leader
- Requires synchronous rounds
- Non-uniformity is not vital: More advanced synchronous Algorithm 3.2 in textbook is uniform
The algorithm:
- Elects the processor p_i with minimal id_i as leader
- Requires synchronous rounds
- Non-uniformity is not vital: More advanced synchronous Algorithm 3.2 in textbook is uniform

Trivial performance analysis:
- Message complexity: n
- Time complexity: $(id_i + 1)n$ rounds
Properties Synchronous LE Algorithm

The algorithm:
- Elects the processor p_i with minimal id_i as leader
- Requires synchronous rounds
- Non-uniformity is not vital: More advanced synchronous Algorithm 3.2 in textbook is uniform

Trivial performance analysis:
- Message complexity: n
- Time complexity: $(id_i + 1)n$ rounds

But:
- Termination time depends on particular choice of $id’s$
- The $id’s$ are not just compared but used for deciding when to send a message
Comparison-Based Algorithms (I)

Some definitions:

- Two rings \(R_1 = (x_1, x_2, \ldots, x_n) \) and \(R_2 = (y_1, y_2, \ldots, y_n) \) are **order-equivalent** if \(x_i < x_j \iff y_i < y_j \) for any \(i, j \).

- A ring is **spaced** if there are at least \(n \) unused id’s between any two \(x_i, x_j \).

- Processors \(p_i \) in \(R_1 \) and \(p_j \) in \(R_2 \) are **matching** if they have same distance from processor with minimum id.

- Local executions \(\alpha_1 \) and \(\alpha_2 \) at \(p_1 \) and \(p_2 \) in \(R_1 \) and \(R_2 \), respectively, are called **similar** if, for all rounds \(k \),
 - \(p_1 \) sends a message to left (right) neighbor in round \(k \) in \(\alpha_1 \iff p_2 \) does so in \(\alpha_2 \).
 - \(p_1 \) terminates as a leader/non-leader in round \(k \) in \(\alpha_1 \iff p_2 \) does so in \(\alpha_2 \).
Comparison-Based Algorithms (II)

Some more definitions:

- An algorithm is called **comparison-based** if every pair of matching processors have similar behaviors in order equivalent rings R_1 and R_2

- A round r is **active** in an execution if some processor sends a message in round r

- r_k is the number of the k-th active round [with $r_0 = 0$ representing the (virtual) “initial round” ending in the initial configuration.]

In case of a comparison-based algorithm:

- Order equivalent rings have the same sequence of active rounds r_k, $k \geq 0$

- We will show even more ...
Lemma 108. Let p_1 and p_2 be processors with identical k-neighborhoods, $k \geq 0$, in order-equivalent rings R_1 and R_2. Then, p_1 and p_2 are in the same state after rounds $0, \ldots, r_k$.
Lemma 108. Let p_1 and p_2 be processors with identical k-neighborhoods, $k \geq 0$, in order-equivalent rings R_1 and R_2. Then, p_1 and p_2 are in the same state after rounds $0, \ldots, r_k$.

Proof. By induction: For $k = 0$, p_1 and p_2 have the same $id_1 = id_2$ and are hence in the same initial state after (virtual) round $r_0 = 0$.

Induction step: Since identical k-neighborhood ($= p_i + k$ left + k right neighbors) implies identical $k - 1$-neighborhood, we can assume that

1. p_1 and p_2 are in the same state after r_{k-1}
2. left and right neighbor p_1^l, p_1^r of p_1 are in same state as p_2^l, p_2^r
3. in non-active rounds $r_{k-1} + 1, \ldots, r_k - 1$, p_1 and p_2 perform the same state transitions
4. in round r_k, p_1 and p_2 receive the same messages \Rightarrow perform the same state transition.
Lemma 109. Let p_1 and p_2 be processors with order-equivalent k-neighborhoods in a single spaced ring R. Then, p_1 and p_2 have similar behaviors in rounds $1, \ldots, r_k$.
Behavior in O-E Neighborhoods

Lemma 109. Let \(p_1 \) and \(p_2 \) be processors with order-equivalent \(k \)-neighborhoods in a single spaced ring \(R \). Then, \(p_1 \) and \(p_2 \) have similar behaviors in rounds \(1, \ldots, r_k \).

Proof. Since \(R \) is spaced and \(p_1, p_2 \) have order-equivalent \(k \)-neighborhoods, we can construct another ring \(R' \) that satisfies:

- \(p_2 \)'s \(k \)-neighborhood in \(R' \) is identical with \(p_1 \)'s \(k \)-neighborhood in \(R \)
- \(p_2 \) in \(R' \) matches \(p_2 \) in \(R \)
- \(R \) and \(R' \) are order-equivalent
- the id's in \(R' \) are unique

The lemma follows since, in rounds \(1, \ldots, r_k \),

- \(p_1 \) in \(R \) has identical state as \(p_2 \) in \(R' \) by previous lemma
- \(p_2 \) in \(R' \) is matching to \(p_2 \) in \(R \) \(\Rightarrow \) similar behaviors since algorithm is comparison-based
We know that

- processors with order-equivalent neighborhoods have similar behaviors
- we need to find just one ring where any algorithm needs $\Omega(n \log n)$ messages
We know that

- processors with order-equivalent neighborhoods have similar behaviors
- we need to find just one ring where any algorithm needs $\Omega(n \log n)$ messages

We will proceed as follows:

- Construct a ring S_n where any p_i’s neighborhood is order-equivalent to many other p_j’s neighborhood
- At least one processor sends a msg per active round \Rightarrow many messages sent per active round
- Show that there is a lower bound for the number of active rounds in S_n
- Summing up over all active rounds yields $\Omega(n \log n)$
Consider the ring $R_n = (0, 1, 2, \ldots, n - 1)$.

- Let $\text{rev}(i)$ be the integer corresponding to the reverse binary representation of i.
- Example: $i = 4 = 100_2 \Rightarrow \text{rev}(i) = 1 = 001_2$
- Define $R_n^{\text{rev}} = (\text{rev}(0), \text{rev}(1), \ldots, \text{rev}(n - 1))$
Consider the ring \(R_n = (0, 1, 2, \ldots, n - 1) \).

- Let \(\text{rev}(i) \) be the integer corresponding to the reverse binary representation of \(i \)
- Example: \(i = 4 = 100_2 \Rightarrow \text{rev}(i) = 1 = 001_2 \)
- Define \(R_{n}^{\text{rev}} = (\text{rev}(0), \text{rev}(1), \ldots, \text{rev}(n - 1)) \)

The ring \(R_{n}^{\text{rev}} \) has interesting properties:

- One can show that all segments of \(2^k \) consecutive processors are order equivalent
- This property is preserved in the spaced ring \(S_n \), where every \(id \) in \(R_{n}^{\text{rev}} \) is replaced by \((n + 1) \cdot id + n \)
Order Equivalent Neighborhoods in S_n

Lemma 112. For $k \leq n/8$ and all k-neighborhoods N of S_n, there are more than $\frac{n}{2(2k+1)}$ k-neighborhoods that are order equivalent to N (including N).
Lemma 112. For $k \leq n/8$ and all k-neighborhoods N of S_n, there are more than $\frac{n}{2(2k+1)}$ k-neighborhoods that are order equivalent to N (including N).

Proof. Let $j = 2^\ell$ be such that $2(2k + 1) > j \geq 2k + 1$.

Partition S_n in $n/j > \frac{n}{2(2k+1)}$ consecutive segments, such that

- one segment totally encompasses N

\Rightarrow all segments are order equivalent, by the properties of S_n
Order Equivalent Neighborhoods in S_n

Lemma 112. For $k \leq n/8$ and all k-neighborhoods N of S_n, there are more than $\frac{n}{2(2k+1)}$ k-neighborhoods that are order equivalent to N (including N).

Proof. Let $j = 2^\ell$ be such that $2(2k + 1) > j \geq 2k + 1$.

Partition S_n in $n/j > \frac{n}{2(2k+1)}$ consecutive segments, such that

- one segment totally encompasses N

\Rightarrow all segments are order equivalent, by the properties of S_n

Corollary 112. At least $\frac{n}{2(2k+1)}$ messages are sent in the k-th active round.
Lemma 113. Any leader election algorithm needs $T \geq n/8$ active rounds in S_n for $n \geq 8$.
Lemma 113. Any leader election algorithm needs $T \geq n/8$ active rounds in S_n for $n \geq 8$.

Proof. Suppose $T < n/8$ and let p_i be the eventual leader. By the previous lemma, there are more than

$$\frac{n}{2(2T+1)} > \frac{n}{2\left(\frac{2n}{8}+1\right)} = \frac{2n}{n+4} > 1$$

order equivalent T-neighborhoods.

Hence,

- at least one p_j has order equivalent T-neighborhood w.r.t. leader p_i

\Rightarrow p_j is also elected by Lemma 107

\Rightarrow Contradiction.
Theorem 114. For every $n = 2^\ell \geq 8$, there is a ring S_n where every synchronous leader election algorithm A sends $\Omega(n \log n)$ messages.
Comparison-based Lower Bound

Theorem 114. For every $n = 2^\ell \geq 8$, there is a ring S_n where every synchronous leader election algorithm A sends $\Omega(n \log n)$ messages.

Proof. By the previous lemmas, the number of messages is more than

\[
\frac{n}{8} \sum_{k=1}^{n} \frac{n}{2(2k + 1)} \geq \frac{n}{6} \sum_{k=1}^{n/8} \frac{1}{k} = \Omega(n \log n)
\]

Note that A needs to be comparison-based on id’s out of $\{0, 1, \ldots, n^2 + 2n - 1\}$ only:

- largest id_{max} in S_n is $(n + 1)\text{rev}(n - 1) + n = n^2 + n - 1$
- Ring R' in Lemma 107 may need n additional id’s larger than id_{max}
Time-bounded Algorithms

Recall synchronous algorithm:
- Time complexity depends on choice of id’s
- What if we disallow such a behavior?

Consider time-bounded leader election algorithms:
- Draw any subset S_n of n distinct id’s from \mathbb{N}
- Worst-case running time must be bounded (over all S_n)

We will show:
- Any time-bounded algorithm also needs $\Omega(n \log n)$ messages
- We will use reduction to comparison-based algorithms
Some Preparations ...

A synchronous LE algorithm is \(t \)-comparison based for
- identifier set \(S \) for ring size \(n \)
- order equivalent rings \(R_1 \) and \(R_2 \) with id’s from \(S \)
if every pair of matching processors have similar behaviors in rounds \(1, \ldots, t \).

We also need:

Theorem 116. (Ramsey’s Theorem)
For all integers \(k, \ell \) and \(t \), there is some integer \(f(k, \ell, t) \) such that for every set \(S \) with \(|S| = f(k, \ell, t) \) and every \(t \)-coloring of the \(k \)-subsets of \(S \), some \(\ell \)-subset of \(S \) has all its \(k \)-subsets with the same color.
Lemma 117. Let A be any synchronous time-bounded LE algorithm with running time bound $r(n)$ in rings with size n. Then, there is some set C_n of $n^2 + 2n$ identifiers such that A is $r(n)$-comparison-based over C_n.
Lemma 117. Let A be any synchronous time-bounded LE algorithm with running time bound $r(n)$ in rings with size n. Then, there is some set C_n of $n^2 + 2n$ identifiers such that A is $r(n)$-comparison-based over C_n.

Proof. Consider n-subsets $S_1, S_2 \subseteq \mathbb{N}$:

1. S_1, S_2 are equivalent if matching processors in every pair of order-equivalent rings R_1 (using id’s from S_1) and R_2 (using id’s from S_2) have similar behavior.

2. The equivalence relation partitions the n-subsets of \mathbb{N} into finitely many equivalence classes: There are only finitely many ($n!$) different R_i with id’s from S_i, and similar behaviors only distinguish
 - presence/absence of finitely many messages
 - terminated/not terminated states
 - in finite number $r(n)$ of rounds

182.073 Verteilte Algorithmen (Prof. Schmid), http://ti.tuwien.ac.at/ecs/teaching/courses/valg) – p. 117/26
Time-bounded LE Lower Bound (II)

Proof. (cont.) Apply Ramsey’s Theorem:

- t is number of equivalence classes (colors)
- $\ell = n^2 + 2n$
- $k = n$

Since \mathbb{N} is infinite, there is

- some subset $S \subseteq \mathbb{N}$ with size $f(k, \ell, t)$
- some subset $C_n \subseteq S$ with $|C_n| = n^2 + 2n$
- where all n-subsets of C_n have same color (are equivalent)

Hence, algorithm A is $r(n)$-comparison-based over C_n:

- Any two order-equivalent rings R_1, R_2 with id’s from $S_1, S_2 \subseteq C_n$, respectively, are equivalent
 - Matching processors have similar behaviors
Theorem 119. Every synchronous time-bounded LE algorithm A sends $\Omega(n \log n)$ messages on some ring R of size $n = 2^\ell \geq 8$.
Theorem 119. Every synchronous time-bounded LE algorithm A sends $\Omega(n \log n)$ messages on some ring R of size $n = 2^\ell \geq 8$.

Proof. We cannot directly apply comparison-based lower bound theorem, since previous lemma holds for specific set $C_n = \{c_0, c_1, \ldots, c_{n^2 + 2n - 1}\}$ only.

We construct modified algorithm A' from A, which has

- id's in $S = \{0, 1, \ldots, n^2 + 2n - 1\}$
- p_i with $id_i = i$ executes algorithm A as if it had $id_i = c_i$

$\Rightarrow A'$ is $r(n)$-comparison-based over S and terminates in $r(n)$ rounds

The $\Omega(n \log n)$ lower bounds follows from

- the comparison-based lower bound theorem, since
- A' and A send same number of messages by construction
Mutual Exclusion in Shared Memory
Shared Memory Systems

We consider asynchronous systems made up of

- \(n \) processors \(p_0, \ldots, p_{n-1} \)
- \(m \) shared memory variables (registers) \(R_0, \ldots, R_{m-1} \)

Distinguish shared memory variables by:

- **Type:** Which atomic operations supported?
 - Test-and-set
 - Read-modify-write
 - Compare-and-swap

- **Access:** Who may simultaneously access?
 - Multiple writer, multiple reader
 - [Single writer, multiple reader]
Formal Model of SHM systems (I)

Processor p_i again modeled as (deterministic) state machine $P_i = (Q_i, \Phi_i, I_i, T_i)$

- state set Q_i (possibly infinite)
- set of initial states $I_i \subseteq Q_i$
- set of terminal states $T_i \subseteq Q_i$
- transition function $\Phi_i \subseteq Q_i \times Q_i$ (successor relation)

Transition $(q, \phi, q') \in \Phi_i$ triggered by event ϕ

- only when in local state q (enabling condition for ϕ)
- modifies at most one SHM register R_k
- moves p_i to local state q'
Formal Model of SHM systems (II)

State $Q_i = L_i \cup S_i$, consisting of

- local state L_i (variables, registers)
- locally accessible portion S_i of shared state
Formal Model of SHM systems (II)

State $Q_i = L_i \cup S_i$, consisting of

- local state L_i (variables, registers)
- locally accessible portion S_i of shared state

The only possible events ϕ in transitions (q, ϕ, q') are computing events of processor p_i, each consisting of

- choosing a **single** shared variable $R_k \in S_i$, depending on p_i’s current local state q
- performing the SHM operation on R_k, according to its type
- changing local state to q', depending on q and the result of the SHM operation
A configuration $C = (l_0, \ldots, l_{n-1}; r_0, \ldots, r_{m-1})$ of the global state machine consist of

- every processor p_i's local state $l_i \in L_i$
- the actual content r_k of every SHM register R_k, abbreviated as $\text{mem}(C) = (r_0, \ldots, r_{m-1})$

A configuration C is similar to C' w.r.t. a set P of processors, denoted by $C \overset{P}{\sim} C'$, if

- every $p_i \in P$ has same local state in C and C'
- $\text{mem}(C) = \text{mem}(C')$

No $p_i \in P$ sees any difference between C and C'
Formal Model of SHM systems (IV)

- **Execution** \(\alpha \) is sequence of configurations alternating with events
- **Schedule** \(\sigma \) is sequence of events
- **\(P \)-only** schedule \(\sigma \) solely from subset \(P \) of processors
- Configuration \(C \) and schedule \(\sigma = \phi_1 \phi_2 \ldots \) uniquely determine execution segment ending up in \(C' = \sigma(C) \)
- Configuration \(C' \) is **reachable** from \(C \) if some schedule \(\sigma \) exists such that \(C' = \sigma(C) \)

Processors in terminal states
- move to (same or other) terminal state only,
- do not modify any SHM variable
Formal Model of SHM systems (V)

Asynchronous systems:
- Computing steps occur in zero time, but
- No upper and lower bounds on the time between local computing steps

Admissible executions:
- Every p_i executes infinitely many events
- But: Exception for Mutual Exclusion Problem
Pseudo-Code Conventions (I)

1. \(\text{Want} := \text{Want} + 1 \)
2. \(\text{Priority} := \text{Priority} + \text{Want} + \text{pri} \)
3. \(\text{num} := \max\{\text{Number}[0], \ldots, \text{Number}[n - 1]\} \)
4. wait until \(\text{Want} = 0 \)

In our pseudo-code descriptions,
- SHM variable names start with upper-case character
- Single statement could involve multiple computing steps [depending on SHM type]:

<table>
<thead>
<tr>
<th>SHM type</th>
<th>line 1</th>
<th>line 2</th>
<th>line 3</th>
<th>line 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W:</td>
<td>2</td>
<td>3</td>
<td>(n)</td>
<td>(K) (?)</td>
</tr>
<tr>
<td>RMW (atomic add):</td>
<td>1</td>
<td>2</td>
<td>(n)</td>
<td>(K) (?)</td>
</tr>
</tbody>
</table>
Pseudo-Code Conventions (II)

1. \(\text{Want} := \text{Want} + 1 \)
2. \(\text{Priority} := \text{Priority} + \text{Want} + \text{pri} \)
3. \(\text{num} := \max\{\text{Number}[0], \ldots, \text{Number}[n - 1]\} \)
4. wait until \(\text{Want} = 0 \)

The processor \(p \) executing this pseudo-code is said to

- **have reached** line 2 \(\iff p \) has already executed line 1 but not line 2
- **be within** lines 2–4 \(\iff p \) has already executed line 2 or 3 but not line 4
Goals of Formal Analysis

Correctness of distributed SHM algorithms:
 - Safety properties
 - Liveness properties

Performance analysis:
 - SHM space complexity, measured in
 - memory bits
 - number of variables
 - Time complexity, measured as
 - execution time if maximum inter-step time at any processor is $\tau = 1$
 - somewhat simplistic due to possibly contention-dependent SHM access times
Time Complexity Analysis

For time complexity analysis,

- starting the execution of a code segment of k steps at time t completes by time $t + (k - 1)\tau = t + (k - 1)$
- next step $k + 1$ occurs by time $t + k$
- detailed step counting usually avoided via $O(.)$:

1. $Want := 0$
2. $Priority := Priority + pri$
3. $num := \max\{Number[0], \ldots, Number[n - 1]\}$
4. wait until $Want = 0$

has time complexity $O(1) + O(n) + O(K) = O(n + K)$, where K is a bound on the number of iterations in line 4.
Mutual Exclusion Problem (I)

Each processor’s entire code divided in 4 sections, in endless loop:

- **Entry** section: Synchronize with others to ensure ME
- **Critical** section: Do what you have to do exclusively, but do not stay indefinitely here. Do not access synchronization-related SHM registers.

 Our assumption: CS consists of a single NOP-step only.
- **Exit** section: Clean up synchronization with others
- **Remainder** section: Non-exclusive computations. Our assumptions:
 - Remainder section consists of single NOP-step only
 - Any processor may forever stop here even in admissible executions
Mutual Exclusion Problem (II)

Mutual exclusion algorithms provide code for entry and exit sections, which guarantees:

- **Mutual exclusion (safety):** In every configuration of every execution, at most one processor is in the critical section

- **One of the following liveness properties:**
 - No deadlock: If p_i is within the entry section at some time, then later some p_j is in the critical section
 - No lockout: If p_i is within the entry section at some time, then later this p_i is in the critical section
 - k-bounded waiting: No deadlock + while p_i is within the entry section, no other processor enters the critical section more than k times
Overview of Upcoming Results

Powerful SHM register types:
- ME algorithm based on test-and-set
- ME algorithm based on read-modify-write
- Lower bound on required number of memory bits

Simple read/write SHM Registers:
- Lamport’s bakery ME algorithm (unbounded range)
- Peterson’s two-processor ME algorithm (bounded range)
- Lower bound on required number of registers

Restrict attention to multiple writer+reader variables
Test-And-Set Variables

A binary test-and-set variable V can be accessed via two operations:

- $TAS(V)$ applied to address V returns a binary value:

 $$
 \begin{align*}
 \text{temp} &:= V \\
 V &:= 1 \\
 \end{align*}
 $$

 executed atomically

 $return(\text{temp})$

- $RESET(V)$ applied to address V does $V := 0$

Atomicity important to

- avoid race conditions
- two processors could both get 0 from simultaneous $TAS(V)$
ME Algorithm with Test-And-Set (I)

Code TAS algorithm 7:

- Entry: wait until $TAS(V) = 0$
- Exit: $RESET(V)$

Theorem 135. The TAS algorithm 7 guarantees mutual exclusion and no deadlock of n processors with a single test-and-set variable.
ME Algorithm with Test-And-Set (I)

Code TAS algorithm 7:
- **Entry:** wait until $TAS(V) = 0$
- **Exit:** $RESET(V)$

Theorem 135. The TAS algorithm 7 guarantees mutual exclusion and no deadlock of n processors with a single test-and-set variable

Proof. By contradiction: Consider the first time t_j when ME is violated since some p_j enters the CS although p_i is still in. Thus,
- V has been set at time t_i by p_i
- no other processor has entered and hence left the CS in $[t_i, t_j]$ since p_j is first one
- V must still be 1 at time t_j, so p_j cannot have read $V = 0$ on entering the CS
ME Algorithm with Test-And-Set (II)

Proof. (Cont.) Proof of no deadlock also by contradiction: Assume \(p_j \) is within entry section at \(t_j \) but no processor enters CS at time \(t > t_j \).

Still,

- no processor may remain in CS forever ⇒ there is a time \(t' \) where the processor in CS at \(t_j \), if any, has left CS and exit section
- Invariant (left to reader): \(V = 0 ⇔ \) no processor is in CS

Hence, \(p_j \) must discover \(V = 0 \) and enter CS at some time \(t \geq t' \)

Hence, the TAS algorithm

- guarantees no deadlock (but NOT no lockout)
- needs just 1 bit of memory (for holding 2 states)
Read-Modify-Write Variables

Generic operation $RMW(V, f)$:

$$\begin{align*}
temp &:= V \\
V &:= f(temp) \\
return &:= temp
\end{align*}$$

executed atomically

A read-modify-write variable V thus allows to atomically

- read V's value v
- compute a new value v' using a type-dependent function $v' = f(v)$, like:
 - Test-and-set: $f(v) \equiv 1$
 - Compare-and-swap: Input parameters w, w'
 $$f(v, w, w') := \text{if } v = w \text{ then } w' \text{ else } v$$

update V’s value to v' accordingly

182.073 Verteilte Algorithmen (Prof. Schmid), http://ti.tuwien.ac.at/ecs/teaching/courses/valg) – p. 137/265
Basic data structure is “virtual” circular queue of length n:

- Processors waiting in entry section entered in queue
- Processors remember their position in the queue ("ticket") in local variable

Shared variable V keeps track of active part of queue via $V.first$ and $V.last$ pointers $\in \{0, \ldots, n - 1\}$

- **Entry code:**
 - Increment $V.last$ modulo n to enqueue self
 - Wait until $V.first$ equals this value

- **Exit code:** Increment $V.first$ modulo n to dequeue itself
Pseudo-Code RMW ME Algorithm 8

Code for every processor:
1. Initially $V = \langle 0, 0 \rangle$

/* Code for entry section: */
2. $pos := \text{RMW}(V, \langle V.\text{first}, V.\text{last} + 1 \rangle)$ // enqueueing at tail
3. repeat
4. $queue := \text{RMW}(V, V)$ // read head of queue
5. until $queue.\text{first} = pos.\text{last}$ // until becomes first

/* Critical section */

/* Code for exit section */
6. $\text{RMW}(V, \langle V.\text{first} + 1, V.\text{last} \rangle)$ // advance head of queue
Detailed proof of safety and liveness of Algorithm 8 is complicated by the modulo-operations involved in RMW.

We first consider a variant of Algorithm 8, where the buffer (and the size of the RMW variable) is unbounded:

Algorithm 8’ has same pseudo-code as Algorithm 8, but

RMW increments \(V.first \) and \(V.last \) not modulo \(n \).

Proof outline:

Prove that Algorithm 8’ solves ME with 1-bounded waiting and no deadlock

Carry over these properties to Algorithm 8 using a simulation relation.
We say that a processor is

- within the **critical** ∪ **exit section**, if it has passed line 5 but not executed line 6,

- within the **entry** ∪ **critical** ∪ **exit section**, if it has executed line 2 but not line 6

By the semantics of RMW and the code of Algorithm 8’, we immediately obtain the following simple properties:

- Both $V.first$ and $V.last$ is advanced in strict sequence \{0, 1, 2, 3, \ldots \}

- Processors draw unique tickets $pos_i.last$ in line 2, in strict sequence \{0, 1, 2, 3, \ldots \}

We proceed with some invariants . . .
Lemma 142. In every reachable configuration of Algorithm 8’, there is at most one process p_i within critical \cup exit section, and its ticket satisfies $pos_i.last = V.first$.

Proof. By induction; left as an exercise. \qed
Lemma 142. In every reachable configuration of Algorithm 8’, there is at most one process p_i within critical \cup exit section, and its ticket satisfies $pos_i.\text{last} = V.\text{first}$.

Proof. By induction; left as an exercise. \qed

Theorem 142. Algorithm 8’ guarantees mutual exclusion with 1-bounded waiting.
Lemma 142. In every reachable configuration of Algorithm 8’, there is at most one process p_i within critical \cup exit section, and its ticket satisfies $\text{pos}_i.\text{last} = V.\text{first}$.

Proof. By induction; left as an exercise. \square

Theorem 142. Algorithm 8’ guarantees mutual exclusion with 1-bounded waiting.

Proof. The above invariant in conjunction with the simple RMW properties implies

- mutual exclusion
- processors enter the CS in the order of drawn tickets
- 1-bounded waiting, since p_i can only be overtaken by p_j already within entry when p_i draws its ticket

\square
Lemma 143. In every reachable configuration of Algorithm 8’, every processor \(p_i \) that is within the entry \(\cup \) critical \(\cup \) exit section has drawn a unique ticket \(pos_i . last \) in the interval \([V. first, V. last) \), and \(V. last - V. first \) equals the number \(d \) of processors that have drawn a ticket.

Proof. By induction; left as an exercise.
Lemma 143. In every reachable configuration of Algorithm 8’, every processor p_i that is within the entry \cup critical \cup exit section has drawn a unique ticket $pos_i.last$ in the interval $[V.first, V.last)$, and $V.last - V.first$ equals the number d of processors that have drawn a ticket.

Proof. By induction; left as an exercise. \qed

Theorem 143. Algorithm 8’ guarantees no deadlock.
Lemma 143. In every reachable configuration of Algorithm 8’, every processor p_i that is within the entry \cup critical \cup exit section has drawn a unique ticket pos_i.last in the interval $[V.first, V.last)$, and $V.last - V.first$ equals the number d of processors that have drawn a ticket.

Proof. By induction; left as an exercise. \hfill \Box

Theorem 143. Algorithm 8’ guarantees no deadlock.

Proof. First, it follows from the above invariant that in case p_i has drawn a ticket pos_i.last

$$V.first \leq pos_i$.last < V.last = V.first + d \leq V.first + n$$

since $1 \leq d \leq n$ processors can have drawn a ticket. \hfill \Box
Analysis RMW ME Algorithm 8’ (IV)

Proof. (cont.)

Assume for a contradiction that no deadlock does not hold:

Let t be the first time when there are $d > 0$ processors that have drawn a ticket (without entering CS yet), but no processor enters the CS after t.

Let p_i be the processor with the smallest ticket among the $d > 0$ ones.

By the previous invariant, p_i must have the ticket $pos_i.\text{last} = V.\text{first}$.

However, $pos_i.\text{last} = V.\text{first}$ is exactly the condition (line 5) that causes p_i to enter the CS — a contradiction.

This completes the correctness proof of Algorithm 8’
Simulation Relation (I)

Given two distributed algorithms (state-machines) \mathcal{L} and \mathcal{H} solving the same problem \mathcal{P}

- $\mathcal{H} = (\mathcal{C}_H, \Phi_H, \mathcal{T}_H, \mathcal{I}_H)$, the higher abstraction level (Algorithm 8’)
- $\mathcal{L} = (\mathcal{C}_L, \Phi_L, \mathcal{T}_L, \mathcal{I}_L)$, the lower abstraction level (Algorithm 8)

Generated event traces:

- $\mathcal{E}_\mathcal{H} = \{\beta | \beta = \mathcal{E}(\alpha) \text{ where } \alpha \text{ is admissible execution of } \mathcal{H}\}$
- $\mathcal{E}_\mathcal{L} = \{\beta | \beta = \mathcal{E}(\alpha) \text{ where } \alpha \text{ is admissible execution of } \mathcal{L}\}$

Map execution segments of \mathcal{L} to executions segments of \mathcal{H}
Simulation Relation (II)

A binary relation $f \subseteq C_L \times C_H$ is a simulation relation (also called abstraction function) if

- initial states of L are mapped to initial states of H:
 \[\forall C_L^0 \in I_L : f(C_L^0) \cap I_H \neq \emptyset, \text{ with } u \in f(s) \iff (s, u) \in f \]
- events of L are mapped to execution segments of H:
 - For all reachable states $C_L \in C_L, C_H \in C_H$ with $C_H \in f(C_L)$, and
 - transition $(C_L, \phi_L, C_L') \in \Phi_L$

there is some

- execution segment $\alpha_H = C_H, \phi_H^1, \ldots, \phi_H^k, C_H'$ with $k \geq 0$ and $C_H' \in f(C_L')$, such that
- the event traces $E(\phi_L) = E(\alpha_H)$ are the same
Theorem 147. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then $\mathcal{E}_L \subseteq \mathcal{E}_H$.
Theorem 147. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then $\mathcal{E}_\mathcal{L} \subseteq \mathcal{E}_\mathcal{H}$.

Proof. Using induction on the number of events in any admissible execution $\alpha_\mathcal{L}$ of \mathcal{L}, an admissible execution $\alpha_\mathcal{H}$ of \mathcal{H} with $\mathcal{E}(\alpha_\mathcal{L}) = \mathcal{E}(\alpha_\mathcal{H})$ can be constructed. Hence, $\mathcal{E}_\mathcal{L} \subseteq \mathcal{E}_\mathcal{H}$. □
Theorem 147. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then $\mathcal{E}_\mathcal{L} \subseteq \mathcal{E}_\mathcal{H}$.

Proof. Using induction on the number of events in any admissible execution $\alpha_\mathcal{L}$ of \mathcal{L}, an admissible execution $\alpha_\mathcal{H}$ of \mathcal{H} with $E(\alpha_\mathcal{L}) = E(\alpha_\mathcal{H})$ can be constructed. Hence, $\mathcal{E}_\mathcal{L} \subseteq \mathcal{E}_\mathcal{H}$.

Theorem 147. If there is a simulation relation f from \mathcal{L} to \mathcal{H}, then every safety property satisfied by \mathcal{H} is also satisfied by \mathcal{L}.
Theorem 147. If there is a simulation relation f from L to H, then $E_L \subseteq E_H$.

Proof. Using induction on the number of events in any admissible execution α_L of L, an admissible execution α_H of H with $E(\alpha_L) = E(\alpha_H)$ can be constructed. Hence, $E_L \subseteq E_H$.

Theorem 147. If there is a simulation relation f from L to H, then every safety property satisfied by H is also satisfied by L.

Proof. Let P denote the union of all safety properties satisfied by H. Then, $E_H \subseteq E_P$ by definition. Since $E_L \subseteq E_H$ by the above theorem, we also have $E_L \subseteq E_P$ as required.
Analysis RMW ME Algorithm 8 (I)

Theorem 148. *Algorithm 8 guarantees mutual exclusion with 1-bounded waiting and no deadlock using a single RMW variable with* $2\left\lceil \log_2 n \right\rceil$ *bits.*
Theorem 148. Algorithm 8 guarantees mutual exclusion with 1-bounded waiting and no deadlock using a single RMW variable with $2^\lceil \log_2 n \rceil$ bits.

Proof. We choose L as Algorithm 8 and H as Algorithm 8’ and consider all events as external events.

For defining f, we just let $(C_L, C_H) \in f$ iff

- $V(C_L).first = V(C_H).first \mod n$
- $V(C_L).last = V(C_H).last \mod n$
- $\forall i : pos_i(C_L).last = pos_i(C_H).last \mod n$

We will show that f is a simulation relation . . .
Analysis RMW ME Algorithm 8 (II)

Proof. (cont.) f is indeed a simulation relation, since

- the unique initial state $C_L = C_H$ is also an initial state for $H \Rightarrow$ the initial state mapping requirement is trivially fulfilled

- there is a 1-1 correspondence between the events in Algorithm 8 and Algorithm 8' \Rightarrow we only need to show $C'_H \in f(C'_L)$.

Since $C'_H \in f(C_L)$ holds by assumption, all state transitions where V and pos_i are only copied or incremented trivially maintain $C'_H \in f(C'_L)$.

Only the event ϕ causing line 5 to terminate could cause a problem:

- Suppose $V(C_L).first = pos_i(C_L).last$, then Algorithm 8 would enter the CS after (C_L, ϕ_L, C'_L).

- We must show that Algorithm 8' does the same, i.e., that also $V(C_H).first = pos_i(C_H).last$ in this case.

\square
Proof. (cont.) However, since
\[V(C_H).first \equiv pos_i(C_H).last \mod n \] (which follows from \[V(C_L).first = pos_i(C_L).last \] and the definition of \(f \))

\[V(C_H).first \leq pos_i(C_H).last < V(C_H).first + n \] (from the second invariant of Algorithm 8’)

\[V(C_H).first = pos_i(C_H).last \] must indeed hold.

Hence, \(f \) is a simulation relation. Consequently, Algorithm 8

- satisfies all safety properties of Algorithm 8’
- even satisfies all liveness properties of Algorithm 8’, since \(f \) establishes a 1-1 correspondence between admissible executions

In Algorithm 8, \(V.first \) and \(V.last \) take on at most \(n \) values, hence \(V \)

- needs \(n^2 \) different SHM states and hence \(2^{\lceil \log_2 n \rceil} \) bits
Theorem 151. Any algorithm that solves mutual exclusion with k-bounded waiting, for some k, uses at least n distinct shared memory states.
Theorem 151. Any algorithm that solves mutual exclusion with k-bounded waiting, for some k, uses at least n distinct shared memory states.

Proof. Start from initial configuration C' (all p_i in remainder)

- \exists infinite p_0-only schedule τ'_0 such that $\text{exec}(C, \tau'_0)$ is admissible

\Rightarrow By no deadlock: \exists prefix τ_0 such that p_0 is in the CS in $C_0 = \tau_0(C')$

Inductively, let

- τ_i be p_i-only schedule that drives p_i into the entry section when starting from C_{i-1}

$\Rightarrow p_0$ is in CS and $\{p_1, \ldots, p_i\}$ are within entry section in configuration C_i, $0 \leq i \leq n - 1$
Lower Bound on Memory States (II)

Proof. (cont.)

Assume, by way of contradiction, that there are less than \(n \) distinct SHM states. Then, there is some \(i < j \) with \(C_i \{p_0, \ldots, p_i\} \sim C_j \) since

- there must be \(i < j \) such that \(\text{mem}(C_i) = \text{mem}(C_j) \)
- \(C_j = \tau(C_i) \) where \(\{p_0, \ldots, p_i\} \) do not take steps in \(\tau = \tau_{i+1} \cdot \ldots \cdot \tau_j \) by construction

Apply an infinite \(\{p_0, \ldots, p_i\} \)-only schedule to \(C_i \) that leads to an admissible execution. By no deadlock,

- some processor \(p_\ell \in \{p_0, \ldots, p_i\} \) must enter CS \(\infty \) often
- there is some prefix \(\rho \) of \(\rho' \) such that \(p_\ell \) enters CS \(k + 1 \) times
Proof. (cont.)

Since $C_i \{p_0, ..., p_i\} \sim C_j$, it follows that:

- Applying ρ to C_j produces same execution for $p_\ell \Rightarrow p_\ell$ enters CS $k + 1$ times also when starting from C_j

- However, resulting execution not admissible since p_{i+1}, \ldots, p_j do not take steps

- Appending schedule σ where every $\{p_0, \ldots, p_j\}$ takes infinitely many steps provides admissible execution where p_j waiting in entry section has been overtaken $k + 1$ times, a contradiction.

□
Mutual Exclusion with R/W Registers

Lamport’s Bakery Algorithm:
- Customers arriving in a bakery
- Get successively numbered tickets on entry
- Only customer with the smallest ticket is actually served

SHM variables used in pseudo code:
- \(Number[i] \) holds \(p_i \)'s ticket (0 if none assigned)
- \(Choosing[i] \) is true if \(p_i \) is about to get its ticket
- Use additional processor id \(i \) for creating unique tickets (\(Number[i], i \))

Note: \(Number[i] \) could grow without bound
Pseude-Code Algorithm 10

Bakery algorithm: Code for processor p_i, $0 \leq i \leq n - 1$

1. \text{VAR} \ Choosing[\forall j] := \text{false}; \ Number[\forall j] := 0

/* Code for entry section: */

2. \ Choosing[i] := \text{true}
3. \ Number[i] := \max\{\text{Number}[0], \ldots, \text{Number}[n - 1]\} + 1
4. \ Choosing[i] := \text{false}
5. \text{for} \ j = 0 \ \text{to} \ n - 1 \ \text{(except} \ j = i) \ \text{do}
6. \quad \text{wait until} \ Choosing[j] = \text{false} \quad // \text{About to get ticket?}
7. \quad \text{wait until} \ Number[j] = 0
8. \quad \text{or} \ (Number[j], j) > (Number[i], i)

/* Critical section */

/* Code for exit section */

8. \ Number[i] := 0 \quad // \text{Throw away used ticket}
Lemma 156. In every configuration C of an execution α of Algorithm 10, if p_i is in the CS and $\text{Number}_{[j]} \neq 0$ for any $j \neq i$, then p_j has a larger ticket than p_i, that is, $(\text{Number}_{[j]}, j) > (\text{Number}_{[i]}, i)$.
Lemma 156. In every configuration C' of an execution α of Algorithm 10, if p_i is in the CS and $\text{Number}[j] \neq 0$ for any $j \neq i$, then p_j has a larger ticket than p_i, that is, $(\text{Number}[j], j) > (\text{Number}[i], i)$.

Proof. Since p_i is in CS, it must have finished second wait (line 7) for j. It either read

- $\text{Number}[j] = 0 \Rightarrow p_i$ observed $\text{Choosing}[j] = \text{false}$, and p_j did not finish choosing a ticket either. Hence, p_j must have started line 3 (if at all) after p_i wrote $\text{Number}[i]$, such that p_j’s ticket is indeed larger than p_i’s.

- $(\text{Number}[j], j) > (\text{Number}[i], i) \Rightarrow$ remains true until p_i leaves CS or p_j chooses another ticket. In the latter case, the previous item reveals that p_j’s new ticket must also be larger than p_i’s.

Hence: Only process with smallest ticket can enter CS!

□
Theorem 157. Algorithm 10 provides mutual exclusion and no lockout.

Proof. Mutual exclusion: Assume, by way of contradiction, that both p_i and p_j are in CS. It is easy to show that $Number[k] > 0$ if p_k is in CS. Applying the previous lemma twice hence yields a contradiction, since $(Number[j], j) > (Number[i], i)$ and $(Number[i], i) > (Number[j], j)$.

No lockout: Assume, by way of contradiction, that ticket T, for some processor p_i, is the first starving ticket. However, p_i must eventually pass testing loop and enter CS, since

- All processors p_j that execute entry code after p_i choose larger tickets \Rightarrow will not enter CS by previous lemma
- all p_j’s with smaller tickets are not starved by assumption and hence eventually exit CS.
Consider a ME algorithm for 2 processors p_0 and p_1 only:

- p_i uses SHM variable $Want[i]$ to signal interest to enter CS
- In case of both $Want[0] = \text{true}$ and $Want[1] = \text{true}$, one processor retreats
- Additional SHM variable $Priority$ says who has (not) to retreat [simply remembers last CS exit]

Note: Textbook starts with unsymmetric algorithm where

- p_1 has to retreat always

\Rightarrow Can only guarantee no deadlock
Pseude-Code Algorithm 12

Peterson’s algorithm: Code for processor p_i, $i \in \{0, 1\}$

1. VAR $Want[j] := false$; $Priority := 0$

/* Code for entry section: */

2. $Want[i] := false$

3. wait until $Want[1−i] = false$ or $Priority = i$

4. $Want[i] := true$ // declare interest

5. if $Priority = 1−i$ then

6. if $Want[1−i] = true$ then goto line 2 // retreat

7. else

8. wait until $Want[1−i] = false$ // wait for exit

/* Critical section */

/* Code for exit section */

9. $Priority := 1−i$ // turn to other processor

10. $Want[i] := false$
Lemma 160. *In Peterson’s Algorithm 12, if processor p_i loops in line 3 (resp. loops in line 8 or reaches the CS), then $\text{Want}[i] := \text{false}$ (resp. $\text{Want}[i] := \text{true}$).*

Proof. Obvious from the code. \square
Lemma 160. In Peterson’s Algorithm 12, if processor p_i loops in line 3 (resp. loops in line 8 or reaches the CS), then $\text{Want}[i] := \text{false}$ (resp. $\text{Want}[i] := \text{true}$).

Proof. Obvious from the code. \hfill \square

Theorem 160. Peterson’s Algorithm 12 provides mutual exclusion.
Correctness Algorithm 12 (I)

Lemma 160. In Peterson’s Algorithm 12, if processor p_i loops in line 3 (resp. loops in line 8 or reaches the CS), then $\text{Want}[i] := \text{false}$ (resp. $\text{Want}[i] := \text{true}$).

Proof. Obvious from the code. \(\square\)

Theorem 160. Peterson’s Algorithm 12 provides mutual exclusion.

Proof. Assume, by way of contradiction, that both p_0 and p_1 are in CS at some time t. By the previous lemma, both $\text{Want}[0] = \text{true}$ and $\text{Want}[1] = \text{true}$ at t.

Assume w.l.o.g. that, when entering CS,

- p_1’s last write $\text{Want}[1] := \text{true}$ happens before
- p_0’s last write $\text{Want}[0] := \text{true}$

From the code, p_0 can enter CS via line 6 or line 8, where it must read $\text{Want}[1] = \text{false}$ in both cases – a contradiction. \(\square\)
Theorem 161. *Peterson’s Algorithm 12 provides no deadlock.*
Theorem 161. *Peterson’s Algorithm 12 provides no deadlock.*

Proof. Assume that both p_0 and p_1 get stuck in the entry section, with w.l.o.g. p_1 being the last process that enters. Let P be the value of *Priority* at this time; note that this variable does not change any more.

If $P = 0$, then

- p_1 never reaches line 8, hence must loop forever within lines 2–6
- p_0 must eventually reach and loop forever in line 8 \(\Rightarrow\) $Want[0] = \text{true by previous lemma}$
- p_1 must hence eventually reach and loop forever in line 3 \(\Rightarrow\) $Want[1] = \text{false by previous lemma}$

\(\Rightarrow\) p_0 cannot loop forever in line 8, a contradiction. \(\square\)
Correctness Algorithm 12 (III)

Proof. (cont.)

If $P = 1$, then

- p_0 was the last to execute line 9 in the exit section
- already $Priority = 1$ at the time p_0 entered the entry section
- same argument as above, with p_0 and p_1 reversed, yields contradiction.

If just one processor, say, p_0, gets stuck in the entry section without the other process entering CS subsequently,

- p_1 must eventually leave CS and stay forever in remainder section
- \Rightarrow $Want[1] = false$ forever, so p_0 cannot loop forever due to lines 3, 6 and 8. Hence, it must enter CS.

\square
Theorem 163. *Peterson’s Algorithm 12 provides no lockout.*
Correctness Algorithm 12 (IV)

Theorem 163. Peterson’s Algorithm 12 provides no lockout.

Proof. Assume, by way of contradiction, that w.l.o.g. p_0 is starved and thus gets stuck in the entry section.

- If p_1 executes line 9 where it sets $Priority := 0$, it remains 0 forever, so
 - p_0 passes the test in line 3 and skips line 6
 - must forever loop in line 8, waiting for $Want[1] = \text{false}$
 \[\Rightarrow \text{Could only happen if } p_1 \text{ gets stuck in entry section as well, which would violate no deadlock} \]

- If p_1 never executes line 9,
 - p_1 must remain forever in remainder section
 \[\Rightarrow Want[1] = \text{false, so } p_0 \text{ cannot loop forever due to lines 3, 6 and 8. Hence, it enters CS.} \]
Derive n-processor ME algorithm from 2-processor one

- Let processors compete pairwise, using $n/2$ instances of 2-processor ME algorithms
- Do the same for the $n/2$ “winners”, etc.

Corresponds to arranging processors as leaves of a tournament tree

- A process that got up k levels in the tree passed the entry section of k 2-processor ME algorithms
- Only one process can win at the root of the tree
 \Rightarrow enters the “real” critical section

Textbook shows: Algorithm 13 provides ME and no lockout
The algorithms seen so far need

- at least one SHM variable if powerful primitives like test-and-set are available
- $O(n)$ R/W SHM variables

We will show now that any ME algorithm that guarantees no deadlock needs at least n R/W variables:

- Trivial if single-writer, since every process must write something to a dedicated variable to let others know
- Advanced lower bound proof for multiple writer variables
Preliminaries Lower Bound Proof

Some definitions:

- A processor covers a variable [at most one] in a configuration if it is about to write it [in the next event].
- For any set P of processors, a configuration C is P-quiescent if there exists a reachable quiescent configuration D such that $C \sim^P D$.

Preliminaries Lower Bound Proof

Some definitions:

- A processor covers a variable [at most one] in a configuration if it is about to write it [in the next event].

- For any set P of processors, a configuration C is P-quiescent if there exists a reachable quiescent configuration D such that $C \sim^P D$.

Our lower bound proof will exploit the following:

- Every processor p_k must inform the others that it wants to enter the CS.

- This must be done in a not-yet covered variable, since p_k’s writing to already covered variables could be overwritten [without the overwritten content being read!].
Lemma 167. Let \(C \) be a reachable \(p_i \)-quiescent configuration for some \(p_i \). Then there is a \(p_i \)-only schedule \(\sigma \) such that \(p_i \) is in CS in \(\sigma(C) \), and \(p_i \) writes to at least one variable uncovered in \(C \) during \(\sigma \).
Lemma 167. Let C be a reachable p_i-quiescent configuration for some p_i. Then there is a p_i-only schedule σ such that p_i is in CS in $\sigma(C)$, and p_i writes to at least one variable uncovered in C during σ.

Proof. Since C is p_i-quiescent, there is a quiescent configuration D with $C \overset{p_i}{\sim} D$. By no deadlock,

- if p_i alone takes steps starting from D, it must eventually enter CS
- the same must happen when this schedule σ is started from C

Assume, by way of contradiction, that p_i only writes to variables already covered in C. Let

- W be the set of covered variables
- P be a set of processors covering every variable in W exactly once (recall that any p_j can cover at most one variable)
Preparation Lemma (II)

Proof. (cont.) Starting from C,

- let every processor in P take exactly one step \Rightarrow every variable in W is now overwritten
- then invoke no deadlock and unobstructed exit to show that every processor not in the remainder can get to it

Call the resulting schedule τ and note that the reached configuration $Q = \tau(C')$ is quiescent. Pick any processor $p_j \neq p_i$ and let π be a p_j-only schedule starting from Q that moves p_j into CS.

- During the first steps of τ, other processors overwrite anything somebody (like p_i during σ) may have written

 \Rightarrow During τ and π, other processors cannot tell whether p_i has executed σ or not [although $\text{mem}(C') \neq \text{mem}(\sigma(C'))$]!

Hence, p_j is in CS both in configuration $\tau\pi(C')$ and $\sigma\tau\pi(C')$ — but in the latter, p_i is also in CS, a contradiction. \square
To show that one needs at least \(n \) variables,

- the preparation lemma cannot simply be used successively, for every processor:
 - using it e.g. for \(p_0 \) need not lead to a configuration that is \(P \)-quiescent for the remaining processors
 - cannot employ preparation lemma again for \(p_1 \)
To show that one needs at least n variables,

- the preparation lemma cannot simply be used successively, for every processor:
 - using it e.g. for p_0 need not lead to a configuration that is P-quiescent for the remaining processors
 - cannot employ preparation lemma again for p_1

But we can use the following lemma with $k = n$ and C equal to the initial configuration for proving our lower bound:

Lemma 169. For any $1 \leq k \leq n$, let $P_k = \{p_0, \ldots, p_{k-1}\}$ and $P^k = \{p_k, \ldots, p_{n-1}\}$. For all reachable quiescent configurations C, there is a P^k-quiescent configuration C_k reachable from C by a P_k-only schedule such that the processors in P_k cover k distinct variables in C_k.
Lower Bound Number of R/W Variables (II)

Proof. By induction. Basis is $k = 1$

- By preparation lemma, there is a p_0-only schedule σ' where at least one write to variable X is performed.
- Let $C_1 = \sigma(C)$ be the configuration reached by the prefix σ of all events in σ' up to but excluding the first write.
- C_1 covers X and is P_1^1-quiescent since only p_0 took steps and $\text{mem}(C_1) = \text{mem}(C')$, as required.

Induction step: Assume lemma holds for $k \geq 1$ and show it for $k + 1$. For purposes of simpler explanation,

- we silently assume that every application of induction hypothesis causes same set W_k of k covered variables to appear.
- will be removed subsequently, by using the fact that we can only have finite number of different sets of k covered variables.
Proof. (cont.) By inductive hypothesis, we can reach some P^k-quiescent C_k' where the processors in P_k cover W_k. Starting from C_k',

- apply the p_k-only schedule σ guaranteed by the preparation lemma to have additional variable X covered
- But: $\sigma(C_k')$ not necessarily P^{k+1}-quiescent since p_k might also have written to some already covered variables

Need more work: Similar to the proof of preparation lemma,

- let every processor in P_k take exactly one step \Rightarrow every variable in W_k is now overwritten
- then invoke no deadlock and unobstructed exit to show that every processor in P_k not in the remainder can get to it

Call the latter schedule τ and let $D_k = \sigma \tau(C_k') = \tau(\sigma(C_k'))$
Lower Bound Number of R/W Variables (IV)

Proof. (cont.) We cannot invoke the inductive hypothesis starting from \(D_k \), however, since it is not quiescent (\(p_k \) not in remainder). Still,

- we could apply \(\tau \) also to \(C_k \), without applying \(\sigma \) first
- the configuration \(D_k^* = \tau(C_k) \) is quiescent \(\Rightarrow \) we can apply inductive hypothesis
- by applying the hypothesized schedule \(\sigma_k \) to \(D_k^* \), we can reach a \(P^k \)-quiescent configuration \(C_k^* \) where \(P_k \) covers \(W'_k \)

Since obviously \(D_k^* \) \(\forall p_j \neq p_k \ SIMP D_k \),

- processors in \(P_k \) do the same in \(\text{exec}(D_k, \sigma_k) \) as in \(\text{exec}(D_k^*, \sigma_k) \)
- in the reached \(P^{k+1} \)-quiescent configuration \(\sigma_k(D_k) = C_{k+1} \), exactly \(k + 1 \) variables \(W_{k+1} = W'_k \cup X \) are covered by processes in \(P_{k+1} \)
Proof. (cont.) Unfortunately, we will usually have different sets

- W_k of variables covered in C_k
- W'_k of variables covered in D^*_k

\Rightarrow We cannot claim $W_k \subseteq W_{k+1} = W'_k \cup X$ needed for our induction proof to go through

However, there are only finitely many different sets of k variables:

- We just iterate our schedule $\tau \sigma_k$ sufficiently often
- There must be some schedule $\tau^1 \sigma^1_k \cdot \cdot \cdot \tau^x \sigma^x_k$ that produces $W'_k = W_k$ (a single one is sufficient for our proof)

Since $W'_k = W_k$, we have indeed constructed the sought configuration C'_{k+1} and we are done
Fault-Tolerant Consensus
Processor Failures

Up to now, we did not consider failures. From now on,
- an unknown set F of processors may be(come) faulty
- we do not know when a faulty processor becomes faulty

We just know
- how many processors $0 \leq f \leq n$ may at most be faulty during the entire execution ($|F| \leq f$)
- which kind of failures are allowed:
 - Crash failures: A processor simply stops executing events (also in the middle of a broadcast)
 - Byzantine failures: A processor can do whatever it wants (including sending arbitrary messages)
- Communication is still reliable [could be dropped]
The Consensus Problem

Every processor p_i has
- an input value x_i from some finite set (often binary)
- an output value y_i, initially undefined
- a consensus algorithm that computes a value for y_i

Required properties in every admissible execution:
- **Termination:** y_i is eventually assigned a value at every non-faulty processor p_i
- **Agreement:** $y_i = y_j$ for all terminated non-faulty processors p_i and p_j
- **Validity:** If $x_k = v$ for all (non-faulty) processors p_k, then $y_i = v$ for every terminated non-faulty processor p_i
Lamport’s Byzantine Army

Consider several divisions of the Byzantine army, each commanded by a general, camped outside an enemy city.

- Every general has some local opinion of whether to attack, say, at noon, or not.
- Byzantine army can win only if all (loyal) divisions are attacking together.
- Generals can communicate via reliable messengers ⇒ need to execute a consensus protocol.

Still,

- some of the Byzantine generals may be traitors, who
- send confusing messages to trigger an inconsistent attack of a subset of loyal generals only.
Overview of Consensus Results

Synchronous message passing case:

<table>
<thead>
<tr>
<th>f-resilient Algorithm</th>
<th>Crash</th>
<th>Byzantine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numer of rounds:</td>
<td>$f + 1$</td>
<td>$f + 1$</td>
</tr>
<tr>
<td>Number of procs:</td>
<td>$n \geq f + 1$</td>
<td>$n \geq 3f + 1$</td>
</tr>
<tr>
<td>Message size:</td>
<td>poly</td>
<td>poly</td>
</tr>
</tbody>
</table>

Asynchronous case:

- **Impossible** in both message passing and SHM systems even for $f = 1$ crash failures

- Reason: Correct processors never know whether a still missing message from some process will ever arrive
Admissible executions in message passing systems:

- Processors faithfully execute their algorithm in **lockstep rounds**, with round \(k \) consisting of
 - simultaneously sending round-\(k \) messages [done in comp-event of round-\(k - 1 \), or in initial state]
 - delivery of all round-\(k \) messages
 - simultaneous single comp-event, terminating round-\(k \) and starting round-\(k + 1 \) until they possibly crash
- A processor \(\in F \) that crashes in round \(k \)
 - does not have a comp-event in any round \(k' \geq k + 1 \)
 - sends the round \(k + 1 \) message to an arbitrary subset of its destination processors only [thereby causing the difficulties]
Admissible executions in message passing systems:

- Any processors faithfully executes its algorithm until it possibly crashes
- A processor that crashes during its k-th comp-event
 - does not execute further comp-events
 - sends the k-th comp-message to an arbitrary subset of its destination processors only
- all sent messages are eventually delivered

Same for SHM model; just drop message deliveries.
A Simple Consensus Algorithm 15

Every processor p_i maintains a set V of values seen so far, initially $V = \{x_i\}$

- add received new values to V and forward them
- proceed for $f + 1$ rounds

Pseudo-code Algorithm 15 for p_i, $0 \leq i \leq n - 1$:

1. Initially $V_i = \{x_i\}$

2. for $k = 1$ to $f + 1$ do // for $f + 1$ rounds

3. send $\{v \in V_i : p_i$ has not already sent $v\}$ to all

4. receive V_j from p_j for all j (including i)

5. $V_i := \bigcup_{j=0}^{n-1} V_j$

6. $y_i := \min(V_i)$ // decide at end of round $f + 1$
Correctness Algorithm 15

Theorem 182. *Algorithm 15 is a f-crash resilient synchronous consensus algorithm.*
Correctness Algorithm 15

Theorem 182. Algorithm 15 is a f-crash resilient synchronous consensus algorithm.

Proof. Termination is trivial, we thus have to show:

- **Validity:** Obvious, since every $\min(V_i)$ must be some p_j’s x_j.
- **Agreement:** It suffices to show that if $x \in V_i$ at the end of round $f + 1 \Rightarrow x \in V_j$, for any non-faulty p_i and p_j.

Let r be first round where x is added to any non-faulty p_i’s set V_i.

- If $r \leq f$, then p_i sends x in round $r + 1 \leq f + 1$ to p_j, which causes p_j to add x to V_j and we are done.
- If $r = f + 1$, there must be a chain of $f + 1$ different processors $p_{i_1}, \ldots, p_{i_{f+1}}$ along which p_{i_1}’s initial value x was forwarded to p_i. Still, we have at most f faulty processors, so at least one must be correct, which contradicts minimality of $r = f + 1$.

182.073 Verteilte Algorithmen (Prof. Schmid), http://ti.tuwien.ac.at/ecs/teaching/courses/valg
Bivalence Proofs: Some Definitions

A configuration C of a binary consensus algorithm is called
- **0-decided** if some correct p_i has already decided 0
- **1-decided** if some correct p_i has already decided 1
- **0-valent** if all decided configurations C' reachable from C are 0-decided
- **1-valent** if all decided configurations C' reachable from C are 1-decided

Classify configurations C as
- **univalent** if C is either 1-valent or 0-valent
- **bivalent** if both a 0-decided and a 1-decided configuration can be reached from C
Some more Definitions

Let α, α_1 and α_2 be admissible executions.

- $\text{dec}(\alpha)$ denotes the unique decision value of all correct processors.
- $\alpha|p_i$ denotes p_i’s view of the execution, consisting of all comp and del events at p_i.
- p_i’s state in the initial configuration of α.
- α_1 is similar to α_2 for some non-faulty p_i, denoted $\alpha_1 \sim p_i \alpha_2$, if $\alpha_1|p_i = \alpha_2|p_i$.
- α_1 is indirectly similar to α_2, denoted $\alpha_1 \approx \alpha_2$, if there are executions β_k and correct processors p_k with $\alpha_1 = \beta_1 \sim p_1 \beta_2 \sim p_2 \cdots \sim p_j \beta_{j+1} = \alpha_2$.
Decisions in Similar Executions

We have the following key observations:

- If $\alpha_1 \sim p_i \sim \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$
- If $\alpha_1 \approx \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$
Decisions in Similar Executions

We have the following key observations:

- If $\alpha_1 \sim_p \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$
- If $\alpha_1 \approx \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$

Subsequently, we consider message-passing systems with:

- $n \geq f + 2$ processors [can be extended to $n \geq f + 1$]
- at most $f \geq 0$ crash failures

and study binary synchronous consensus algorithms

- that send a message to all processors in every round
- and keep a full message history in the local state [can be dropped by reduction]

- in failure-sparse executions: At most 1 crash per round
Theorem 186. Any consensus algorithm \(A \) for \(n \geq f + 2 \) processors that is resilient to \(f \geq 1 \) crash failures requires at least \(f + 1 \) rounds in some admissible execution.
Lower Bound on Number of Rounds (I)

Theorem 186. Any consensus algorithm A for $n \geq f + 2$ processors that is resilient to $f \geq 1$ crash failures requires at least $f + 1$ rounds in some admissible execution.

Proof. The proof consist of two parts, which will be proved as independent lemmas subsequently:

- There is an $f - 1$-round (sparse) execution α_{f-1} that ends in a bivalent (and hence undecided) configuration
- By extending α_{f-1} by one additional round, at least one correct processor is still undecided

Hence, f rounds are not enough for all correct processors to decide. □
Lemma 187. *Algorithm \mathcal{A} has a bivalent initial configuration.*
Lemma 187. Algorithm A has a bivalent initial configuration.

Proof. For the sake of contradiction, assume that all initial configurations are univalent. Clearly,

- I_{0*} where all processors p_i start with input value $x_i = 0 \Rightarrow$ must be 0-valent by validity
- I_{1*} where all processors p_i start with input value $x_i = 1 \Rightarrow$ must be 1-valent by validity

Hence, toggling x_0, x_1, \ldots one after the other starting from I_{0*} reveals that there is

- some 0-valent initial configuration I_0, and
- some 1-valent initial configuration I_1

that differ in a single x_i only. \qed
Bivalent Initial Configuration Lemma (II)

Proof. (cont.)

Now consider the (sparse) admissible schedule σ where

- p_i crashes initially and all other processors are correct
- all correct processors have decided in $\sigma(I_0) \Rightarrow$ decision must be 0 as I_0 is 0-valent

Let $\alpha_0 = \text{exec}(I_0; \sigma)$ be the resulting admissible execution and consider $\alpha_1 = \text{exec}(I_1; \sigma)$.

- α_1 is indistinguishable from α_0 for any $p_j \neq p_i$
- $\alpha_1 p_j \sim \alpha_0 \Rightarrow \text{dec}(\alpha_1) = \text{dec}(\alpha_0) = 0$

However, $\text{dec}(\alpha_1)$ should be 1 since configuration I_1 where α_1 starts is 1-valent, which provides the required contradiction. \(\square\)
Lemma 189. For each k, $0 \leq k \leq f - 1$, there is a k-round execution of A that ends in a bivalent configuration.
Lemma 189. For each \(k \), \(0 \leq k \leq f - 1 \), there is a \(k \)-round execution of \(A \) that ends in a bivalent configuration.

Proof. By induction.

The basis \(k = 0 \) is provided by the previous lemma.

For the induction step, assume that \(\alpha_{k-1} \) is the (sparse) \(k - 1 \)-round execution ending in a bivalent configuration \(C_{k-1} \), according to the induction hypothesis. Note: \(k - 1 \leq f - 2 \) here. 2 cases:

- There is some (sparse) 1-round extension of \(\alpha_{k-1} \) that ends in a bivalent configuration \(\Rightarrow \) we are done.

- All (sparse) 1-round extensions of \(\alpha_{k-1} \) lead to univalent configuration \(\Rightarrow \) use contradiction proof.
Proof. (cont.)

Assuming that all 1-round extensions of α_{k-1} lead to univalent configuration, consider two different ones:

- β_k where no crash occurs in round k and w.l.o.g. a 1-valent configuration is reached
- γ_k where one crash occurs in round k and a 0-valent configuration is reached (since C_{k-1} is bivalent, γ_k must exist).

In γ_k,

- let p_i be the processor that crashes in round k, and
- $q_1, \ldots, q_m, 1 \leq m \leq n$, be the processors that do not get a message from p_i.

\square
Bivalent Successor Configuration (III)

Proof. (cont.)

Now define α_k^j, $0 \leq j \leq m$, as the one round extension of α_{k-1} where p_i does not send a message to q_1, \ldots, q_j. Clearly,

- $\alpha_k^0 = \beta_k$ and reaches a 1-valent configuration C_k^0
- $\alpha_k^m = \gamma_k$ and reaches a 0-valent configuration C_k^m

Somewhere in $C_k^0, C_k^1, \ldots, C_k^m$ there must be a switch from 1-valent to 0-valent. Let j be the appropriate index, such that

- configuration C_k^j reached by α_k^j is 1-valent
- configuration C_k^{j+1} reached by α_k^{j+1} is 0-valent
- only processor q_{j+1} sees a difference between α_k^j and α_k^{j+1}
Bivalent Successor Configuration (IV)

Proof. (cont.)

Since at most \(k \leq f - 1 \) processes can have crashed in any \(\alpha^x_k \),

- \(q_{j+1} \) may additionally crash at the beginning of round \(k + 1 \), without exceeding the failure bound \(f \)
- kills the only witness of the difference between \(\alpha^j_k \) and \(\alpha^{j+1}_k \)

Consider the admissible extensions \(\delta^j_k \) of \(\alpha^j_k \) and \(\delta^{j+1}_k \) of \(\alpha^{j+1}_k \) where \(q_{j+1} \) crashes at the beginning of round \(k + 1 \). For any correct \(p_\ell \),

- \(\delta^j_k p_\ell \cong \delta^{j+1}_k \) such that the decision values must be the same
- Contradiction, since the configurations reached by \(\alpha^j_k \) and \(\alpha^{j+1}_k \) had different valences.

This confirms that some one-round extension \(\alpha_k \) of \(\alpha_{k-1} \) must indeed end in a bivalent configuration. \(\square \)
No Decision in Round f (I)

Lemma 193. If α_{f-1} is an $f-1$-round (sparse) execution of A that ends in a bivalent configuration C_{f-1}, then there is a 1-round extension in which some correct processor has not decided.
No Decision in Round \(f \) (I)

Lemma 193. If \(\alpha_{f-1} \) is an \(f - 1 \)-round (sparse) execution of \(A \) that ends in a bivalent configuration \(C_{f-1} \), then there is a 1-round extension in which some correct processor has not decided.

Proof. If there is a 1-round extension with at most one crash in round \(f \) that ends in a bivalent configuration, we are done. Otherwise, consider the 1-round extensions

\[\beta_f \] where no crash occurs in round \(f \) and w.l.o.g. a 1-valent configuration is reached

\[\gamma_f \] where one crash occurs in round \(f \) and a 0-valent configuration is reached (since \(C_{f-1} \) is bivalent, \(\gamma_f \) must exist).

Let \(p_i \) be the unique processor that fails in round \(f \) in \(\gamma_f \). \(\Box \)
No Decision in Round \(f \) (II)

Proof. (cont.)

The processor \(p_i \) crashing in round \(f \) fails to send a message to some processor \(p_j \), which must be correct since

- \(p_j \) cannot crash in round \(f \) as \(p_i \) does so (sparse execution)
- all candidate \(p_j \) cannot have crashed before round \(f \) (as otherwise \(\beta_f \) and \(\gamma_f \) would be indistinguishable for all correct processes \(\Rightarrow \) cannot lead to configurations with different valences

Consider a third 1-round extension \(\delta_f \) of \(\alpha_{f-1} \) that is

- the same as \(\gamma_f \), except that
- \(p_i \) succeeds to send a message to some correct \(p_k \neq p_j \)
- Note: Such a \(p_k \) must exist since \(n \geq f + 2 \), and \(\delta_f \) may be \(\gamma_f \).
No Decision in Round f (III)

Proof. (cont.)

Since $\beta_f \overset{p_k}{\sim} \delta_f$ as well as $\delta_f \overset{p_j}{\sim} \gamma_f$, it follows that in δ_f

- the decision of p_k at the end of round f can only be 1 (or undefined)
- the decision of p_j at the end of round f can only be 0 (or undefined)
- their decision must be the same \Rightarrow cannot both be defined

Note that $\beta_f \overset{p_k}{\sim} \delta_f \nRightarrow \beta_{f+1} \overset{p_k}{\sim} \delta_{f+1}$, hence

- if p_k is undefined at the end of round f in δ_f,
 \Rightarrow it need not decide 1 in some later round following δ_f even though β_f was 1-valent

\Rightarrow proof does not contradict the possibility of β_f being 1-valent and γ_f being 0-valent

\square
Synchronous Byzantine Consensus

We now increase the adverse capabilities of faulty processors:

- They need not adhere to the algorithm at all
- They can send any message, even inconsistently, to any receiver
- They can collude in an attempt to maximize their adverse power.

Upcoming results:

- Exponential information gathering (EIG) algorithm
- Lower bound for required number of processors
- [Lower bound for number of rounds is still $f + 1$]
EIG Algorithm (I)

Requirements and properties:
- \(n \geq 3f + 1 \)
- \(f + 1 \) rounds
- messages with exponential size

Principle of operation:
- Every processor \(p_i \) sends its \(x_i \) to all in the first round
- **Forwarding stage**: \(f \) additional rounds where every \(p_j \) forwards the information obtained in the previous round ("\(p_j \) says that \(p_k \) says that ... that \(p_i \) sent value \(x_i \)")
- **Decision stage**: At the end of round \(f + 1 \), compute decision based on the values received in forwarding stage
Every node maintains a labeled tree data structure with $f + 2$ levels (height $f + 1$):

- The level-0 root has the empty label ε
- A level-k node, $1 \leq k \leq f + 1$, is labeled with a unique variation (without replacement) $\pi = i_1 i_2 \cdots i_k$ of processor indices $\in \{0, \ldots, n - 1\}$
- The leafs are at level $f + 1$
- Every node at level $k < f + 1$ has degree $n - k$
- $\text{tree}_i(\pi)$ denotes the value stored in p_i’s tree node with label π
- A node with label $\pi = \pi' i_k$ (and the edge leading to it) corresponds to processor p_{ik} as it gets its data from p_{ik}.
EIG Algorithm (III)

Forwarding stage:
- Every p_i stores x_i into the root of its tree
- In round k, $1 \leq k \leq f + 1$, processor p_i
 - sends level $k - 1$ of its tree to all
 - stores in its node with label π'_{ik} the value v received from p_{ik} from its level-$k - 1$ node with label π' (or v_\perp in case of no or an erroneous message)
 - means “p_{ik} says that p_{ik-1} says that ... that p_{i2} says that p_{i1} sent v”

Decision stage:
- At the end of round $f + 1$, processor p_i decides $y_i = \text{resolve}_i(\varepsilon)$
The recursive majority vote resolve_i is defined as

- $\text{resolve}_i(\pi) = \text{tree}_i(\pi)$ if π is a leaf
- $\text{resolve}_i(\pi)$ is the majority of $\text{resolve}_i(\pi'')$ for all children $\pi'' = \pi_k$ of π (or v_\perp if no majority exists)

\Rightarrow Corresponds to building up a resolve tree that has the same leafs as the forwarding tree (© H. Moser)

A few additional definitions for our analysis:

- A node π is common if $\text{resolve}_i(\pi) = \text{resolve}_j(\pi)$ for all non-faulty p_i and p_j
- A subtree has a common frontier if there is a common node on every path from the root to its leaves
Lemma 201. *If the subtree rooted at node π has a common frontier, then π is common.*
Lemma 201. If the subtree rooted at node π has a common frontier, then π is common.

Proof. By induction on the level of π. If π is a leaf, the statement follows directly from the definition of a common frontier.

Induction step: Assume π is a node at level ℓ, and that the lemma holds for nodes at level $\ell + 1$. If π was not common,

- every subtree rooted at a child π^k of π must have a common frontier
- since every child π^k has level $\ell + 1$, the induction hypothesis reveals that they must all be common
- All non-faulty processors resolve the same value for all children and hence for π, i.e., π must be common.
Lemma 202. For every tree node label $\pi = \pi' j$, where p_j is non-faulty, resolve $i(\pi) = \text{tree}_j(\pi')$ at every non-faulty p_i. Hence, π is common.
Lemma 202. For every tree node label $\pi = \pi'_j$, where p_j is non-faulty, $\text{resolve}_i(\pi) = \text{tree}_j(\pi')$ at every non-faulty p_i. Hence, π is common.

Proof. By induction on the level of π, starting from the leaves: If π is a leaf, p_i stores in it what p_j sent for π' in the last round. Our claim follows immediately here since $\text{resolve}_i(\pi) = \text{tree}_i(\pi)$.

Induction step: Assume $\pi = \pi'_j$ is not a leaf. Then,

- π has at most level f and hence at least degree $n - f$. Since $n \geq 3f + 1$, π has a majority of non-faulty children π_k.
- Since p_j is non-faulty, p_k must have received and stored $\text{tree}_j(\pi')$ in its $\text{tree}_k(\pi)$ [holds also for $k = i$].
- By the induction hypothesis, $\text{resolve}_i(\pi_k) = \text{tree}_k(\pi) = \text{tree}_j(\pi')$.
- Hence, all of π's non-faulty children and hence π resolve to $\text{tree}_j(\pi') = \text{tree}_i(\pi)$ as asserted.
Theorem 203. For $n \geq 3f + 1$, EIG solves consensus in presence of up to f Byzantine failures.
Analysis EIG Algorithm (IV)

Theorem 203. For $n \geq 3f + 1$, EIG solves consensus in presence of up to f Byzantine failures.

Proof. Validity: If all non-faulty processors start with the same input v,
- a majority of children j of the root at any non-faulty p_i satisfy $resolve_i(j) = v$ by our lemma
- Hence, $resolve_i(\varepsilon) = v$ as well.

Agreement: Each path from a child of the root to a leaf involves $f + 1$ nodes that correspond to different processors. Hence,
- at least one processor on every path from the root to the leaves is correct \Rightarrow the corresponding node is common by our lemma
- the root has a common frontier

Hence, the root must be common, which completes our proof. □
Contradicting intuition,

- a majority of correct processors is NOT sufficient
- EIG needed $n \geq 3f + 1$ processors
Contradicting intuition,

- a majority of correct processors is NOT sufficient
- EIG needed $n \geq 3f + 1$ processors

Why is this?
Lower Bound for Number of Processors

Contradicting intuition,
- a majority of correct processors is NOT sufficient
- EIG needed $n \geq 3f + 1$ processors

Why is this?

Recall illustrating example:
- Consider $f = 1$
- Try to synchronize the clocks of 3 processors p_0, p_1, p_2, one of which (say, p_0) is Byzantine

Problem: p_0 may send different information to p_1 and p_2.
Lower Bound for $f = 1$ (I)

Theorem 205. There is no algorithm that solves consensus in presence of a single Byzantine failure in a system of 3 processors.
Lower Bound for $f = 1$ (I)

Theorem 205. There is no algorithm that solves consensus in presence of a single Byzantine failure in a system of 3 processors.

Proof. Suppose there is some binary consensus algorithm $\mathcal{A} = (\mathcal{A}, \mathcal{B}, \mathcal{C})$ for three processors

- p_0 executes code \mathcal{A}, p_1 and p_2 execute \mathcal{B} and \mathcal{C}, respectively
- arrange six non-faulty processors in a ring $(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{A}, \mathcal{B}, \mathcal{C})$
- assign the input values $(1, 1, 1, 0, 0, 0)$ to those processors and let them execute their algorithm

Clearly, the resulting execution α_6 does not necessarily solve consensus in this six processor system, BUT ...
Lower Bound for $f = 1$ (II)

Proof. (cont.)

α_6 ensures that

- every processor has a fixed, well-defined behavior
- every algorithm locally perceives a system that looks like a three-processor system (with one Byzantine faulty processor)

- For example, $\alpha_{6, p_0, p_1}^{p_0, p_1} = \alpha_6 \{p_0, p_1\} = \alpha_{3}^{1} \{p_0, p_1\}$

- A single neighbor is “split” on two processors \Rightarrow acts Byzantine w.r.t. the others

- Every two non-split processors (p_0, p_1) should reach agreement

\square
Lower Bound for $f = 1$ (III)

Proof. (cont.)
As a consequence,

- every two “consecutive” three-processor systems have one processor common, like p_1 in

$$\alpha_{6}^{p_0,p_1} = \alpha_6|\{p_0, p_1\} = \alpha_3^1|\{p_0, p_1\}$$

$$\alpha_{6}^{p_1,p_2} = \alpha_6|\{p_1, p_2\} = \alpha_3^2|\{p_1, p_2\}$$

- p_1 has the same view $\alpha_3^1|p_1 = \alpha_3^2|p_1$ in both \Rightarrow same decision

Consider α_3^1, α_3^2 and α_3^3:

- Validity enforces decision 1 in α_3^1 and 0 in α_3^3

- Unique decision in α_3^2 should be the same as in both α_3^1 and α_3^3

\Rightarrow Contradiction
Lower Bound for arbitrary f

Theorem 208. There is no algorithm that solves consensus in presence of f Byzantine failure in a system of $n \leq 3f$ processors.
Lower Bound for arbitrary f

Theorem 208. There is no algorithm that solves consensus in presence of f Byzantine failure in a system of $n \leq 3f$ processors.

Proof. We use a simple simulation (reduction) argument:

- Assume such an algorithm \mathcal{A} exists.
- Consider a system of 3 processors, where each processor executes \mathcal{A} for at most $n/3$ “sub-processors” (e.g. in round robin order).
- Let a processor terminate if any of its sub-processor algorithms terminate, returning the latter’s decision.

Obviously,

- If ≤ 1 processor is Byzantine, $\leq n/3$ sub-processors are.
- \mathcal{A} should achieve consensus \Rightarrow this contradicts the 3-processor impossibility, however.
Consensus in Asynchronous Systems

Asynchronous systems of n processors:

- Processors and communication are asynchronous
- At most f processors may fail by crashing, i.e.,
 - work correctly up to some comp-event ϕ_k
 - do not execute further comp-events ϕ_l with $l > k$
- MP: send the k-th comp-message to an arbitrary subset of destination processors only
- MP: Communication is completely reliable

Will show: Consensus is impossible both in SHM and MP systems even if $f = 1$
Overview of Upcoming Results

Wait-free case $f = n - 1$

- Wait-free $≃$ algorithms must not wait for messages since they could block
- Impossibility easier to show since many faulty processes

General case $f = 1$

- Same as wait-free case for $n = 2$
- Show impossibility for arbitrary n by clever reduction

Above results shown for (single-writer) SHM systems.

- Impossibility for MP systems by simple reduction
- Well-known direct proof by Fischer, Lynch & Paterson
Uniform Bivalence Proofs: Definitions

A configuration C in an admissible execution is called

- **0-decided** if some (correct or faulty) p_i has already decided 0
- **1-decided** if some p_i has already decided 1
- **0-valent** if all decided configurations C' reachable from C are 0-decided
- **1-valent** if all decided configurations C' reachable from C are 1-decided

Classify configurations C as

- **univalent** if C is either 1-valent or 0-valent
- **bivalent** if both a 0-decided and a 1-decided configuration can be reached from C
Preparation Lemma

Lemma 212. Let C_1 and C_2 be two univalent configurations of a wait-free binary consensus algorithm. If $C_1 \overset{p_i}{\sim} C_2$ for some correct p_i, then both configurations have the same valence.
Preparation Lemma

Lemma 212. Let C_1 and C_2 be two univalent configurations of a wait-free binary consensus algorithm. If $C_1 \sim_{p_i} C_2$ for some correct p_i, then both configurations have the same valence.

Proof. Consider an infinite p_i-only schedule σ starting from C_1:
- p_i must decide in $\text{exec}(C_1, \sigma)$ because algorithm is wait-free.
- Since C_1 is v-valent for some $v \in \{0, 1\}$, the decision must be v.

Now apply σ to C_2:
- Yields a feasible execution since p_i starts from same configuration.
- p_i must also decide in $\text{exec}(C_2, \sigma)$ and its decision must also be v.

\(\blacksquare\)
Lemma 213. *Every wait-free binary consensus algorithm has a bivalent initial configuration.*
Lemma 213. *Every wait-free binary consensus algorithm has a bivalent initial configuration.*

Proof. Consider the following initial configurations:

- I_0 where all processors p_i start with input value $x_i = 0 \Rightarrow$ must be 0-valent by validity
- I_1 where all processors p_i start with input value $x_i = 1 \Rightarrow$ must be 1-valent by validity

Now consider initial configuration I_{01} where $x_0 = 0$ and $x_i = 1$ for $1 \leq i \leq n - 1$. Assume, by way of contradiction, that is is univalent:

- $I_{01} \sim p_0 I_0 \Rightarrow I_{01}$ must be 0-valent by preparation lemma
- $I_{01} \sim p_1 I_1 \Rightarrow I_{01}$ must be 1-valent by preparation lemma

\Rightarrow Contradiction; so I_{01} must be bivalent.
Lemma 214. Every bivalent configuration of a wait-free binary consensus algorithm has at least one bivalent successor configuration.
Lemma 214. Every bivalent configuration of a wait-free binary consensus algorithm has at least one bivalent successor configuration.

Proof. Every configuration C has exactly n possible successor configurations C_k, depending on which of p_0, \ldots, p_{n-1} takes the next step.

- Assume, by way of contradiction, that all C_k are univalent.
- Since C is bivalent, there must be i and j such that $C_i = i(C')$ and $C_j = j(C')$ are 0-valent and 1-valent, respectively.

Distinguish 2 possible cases...
Bivalent Successor Configuration (II)

Proof. (cont.) Distinguish 2 possible cases:

- If the steps i and j commute (read/write different registers or read the same one), $i(j(C')) = j(i(C')) \Rightarrow i(C')$ and $j(C')$ cannot have different valences.

- If i writes some register and j reads it (both i and j writing same register disallowed since single-writer), consider $i(C')$ and $i(j(C'))$:
 - $i(j(C'))$ is 1-valent since $j(C')$ is 1-valent
 - $i(C')$ is 0-valent
 - $i(C') \overset{p_i}{\sim} i(j(C')) \Rightarrow$ should have same valence by preparation lemma.

\[\square \]
Theorem 216. There is no single-writer SHM wait-free binary consensus algorithm for n processors.
Impossibility Wait-Free Consensus

Theorem 216. There is no single-writer SHM wait-free binary consensus algorithm for \(n \) processors.

Proof. We know from earlier lemmas:

- There is a bivalent initial configuration
- Every bivalent configuration has at least one bivalent successor configuration

Hence there is at least one non-terminating execution.

Multiple-writer SHM can be simulated atop of single-writer SHM ⇒ impossibility holds for any SHM system
Consensus Impossibility for \(f = 1 \)

Use reduction:
- Assume that there is a \(n \)-processor consensus algorithm \(A \) that can cope with \(f = 1 \) crashes
- Use \(A \) to construct a 2-processor consensus algorithm that can cope with a single crash, by letting
 - **simulating processors** \(p_0, p_1 \) simulate the execution of
 - **simulated processors** \(q_0, \ldots, q_{n-1} \)

Naive solution:
- Let \(p_0, p_1 \) simulate \(n/2 \) simulated processors each
- Does not work, since crash of simulating processor would result in \(f = n/2 \)
Principle of Simulation (I)

Key idea:

- Both simulating processors p_0, p_1 execute code for all q_0, \ldots, q_{n-1} in round-robin order each.

- W.l.o.g. code of any q_j structured as sequence of (non-atomic) steps. The k-th step of q_j as executed by p_i consists of:
 - reading some q_ℓ’s $k-1$-state from SHM variable $Q_\ell[k-1]$.
 - performing some state transition of q_j.
 - writing q_j’s entire new state into q_j’s dedicated SHM variable $SQ^i_j[k]$ at p_i (“suggestion”).

- For every step of q_i, the faster p_i wins in determining the step’s global result $Q_j[k] := SQ^i_j[k]$.

182.073 Verteilte Algorithmen (Prof. Schmid), http://ti.tuwien.ac.at/ecs/teaching/courses/valg) – p. 218/265
Determination of winner for \(q_j \)'s \(k \)-th step:

- Simulating processor \(p_i \)
 - first writes own suggestion \(SQ^i_j[k] \)
 - checks whether other simulating processor \(p_{1-i} \) has not yet written its suggestion \(SQ^{1-i}_j[k] \)

Let \(\text{flag}[0] \) and \(\text{flag}[1] \) be the boolean results of those checks for \(i = 0 \) and \(i = 1 \), respectively. If

- \(\text{flag}[i] = \text{true} \) and \(\text{flag}[1 - i] = \text{false} \) then winner is \(p_i \)
- If \(\text{flag}[i] = \text{false} \) and \(\text{flag}[1 - i] = \text{false} \) then winner is, say, always \(p_0 \)
- The case \(\text{flag}[i] = \text{true} \) and \(\text{flag}[1 - i] = \text{true} \) is impossible by construction (both write before read)
Principle of Simulation (III)

Resulting 2-process consensus algorithm at simulating processors p_0, p_1:

- Initial configuration of q_j at p_i takes p_i’s input value
- Note: q_j’s state at p_0 and p_1 are different if $x_0 \neq x_1$. This does not harm, however, since only one wins
- p_i’s consensus algorithm terminates if any simulated q_j’s consensus algorithm terminates
- Result is this q_j’s output value

This algorithm should be able to tolerate a single crash . . .
Principle of Simulation (IV)

Why does this result in an admissible execution for the simulated algorithm?

- Every simulated processor q_j performs infinitely many steps if both p_0 and p_1 are alive.
- At most one of p_0 and p_1 may crash while it executes some q_j’s step.
- Only this q_j’s algorithm may block forever, all other q_ℓ with $\ell \neq j$ execute infinitely many steps on the remaining simulating processor.

Theorem 221. There is no n processor consensus algorithm for R/W asynchronous SHM that can tolerate even a single crash failure.

Proof. See textbook for all the details. \qed
Theorem 222. *There is no* \(n \) *processor consensus algorithm for asynchronous message passing systems that can tolerate even a single crash failure.*
Impossibility MP Consensus (I)

Theorem 222. There is no \(n \) processor consensus algorithm for asynchronous message passing systems that can tolerate even a single crash failure.

Proof. We again use reduction, by simulating an MP system atop of a SHM system:

- For every ordered pair of processors, there is a single-writer single-reader R/W link register (unbounded range)
- Sender appends new message to prior content of all outbound link registers
- Receiver polls all inbound link registers in round-robin fashion to get new messages
- Additional receive delay does not matter since we are dealing with asynchronous system
Proof. (cont.)

If there was a MP consensus algorithm \mathcal{A} that tolerates a single crash,

- this simulation in conjunction with \mathcal{A} would yield a SHM consensus algorithm that tolerates a single crash

- such a SHM algorithm does not exist \Rightarrow contradiction.

Note that there is also a famous direct bivalence proof by Fischer, Lynch & Paterson
Causality
Causality of Events in MP Systems

A single execution ϕ^1, ϕ^2, \ldots imposes a total order of events
- usually not the only possible execution of an algorithm
- loses causality information since it also orders independent events

Consider the space-time diagram of an execution, which
- contains only comp-events (that may send and/or receive messages)
- shows end-to-end delays only, i.e., hides del-events

Example of independent events:
- comp-event ϕ^1 at processor p_0 sending message m
- comp-event ϕ^{12} at processor p_2 sending message m'
Happened-Before Relation (MP)

Event ϕ happens before event ϕ' in execution α, denoted as $\phi \xrightarrow{\alpha} \phi'$, if either

- ϕ and ϕ' are comp-events by the same processor and ϕ occurs before ϕ'
- ϕ is comp-event where message m is sent and ϕ' is comp-event where m is received
- there is some event ϕ'' such that $\phi \xrightarrow{\alpha} \phi''$ and $\phi'' \xrightarrow{\alpha} \phi'$

The happened-before relation
- captures (possible) internal causality
- allows to identify independent (concurrent) events:

$$\phi \parallel_{\alpha} \phi' \Leftrightarrow (\phi \neq \phi') \land (\phi \not\xrightarrow{\alpha} \phi') \land (\phi' \not\xrightarrow{\alpha} \phi')$$
Some more Definitions

Definition 227. Given an execution fragment $\alpha = \text{exec}(C, \sigma)$ [always: involving the comp-events only], a permutation π of σ is a causal shuffle if

- all processors have the same view: $\sigma\mid_{p_i} = \pi\mid_{p_i}$ for all $0 \leq i \leq n - 1$
- a message is received after it is sent in π
Some more Definitions

Definition 227. Given an execution fragment $\alpha = \text{exec}(C, \sigma)$ [always: involving the comp-events only], a permutation π of σ is a causal shuffle if

- all processors have the same view: $\sigma|p_i = \pi|p_i$ for all $0 \leq i \leq n - 1$
- a message is received after it is sent in π

Lemma 227. Given some execution fragment $\alpha = \text{exec}(C, \sigma)$,

- any total ordering of the events in σ that is consistent with the happens-before relation of α is a causal shuffle
- for any causal shuffle π of σ, $\alpha' = \text{exec}(C, \pi)$ is an execution fragment that is similar to α (i.e., similar for every processor).
How can Processors Observe Causality?

By timestamping events, using either
- [High-resolution] real-time clocks
- Logical clocks (“Lamport clocks”)
- Vector clocks

Real-time and logical clocks
- ensure $\phi \rightarrow \phi' \Rightarrow TS(\phi) < TS(\phi')$
- do not fully capture causality since $TS(\phi) < TS(\phi') \nRightarrow \phi \rightarrow \phi'$
- lack a gap detection property: If $TS(\phi) < TS(\phi')$, is there some ϕ'' with $\phi \rightarrow \phi'' \rightarrow \phi'$?

Both problems can be solved by using vector clocks
Logical Clocks (1)

Lamport Clocks: Every process maintains an integer variable LT that is used for timestamping events and messages

- Initially, $LT := 0$
- LT is updated in each comp-event ϕ to $LT(\phi)$ as follows:
 - If a message m with timestamp $TS(m)$ is received in ϕ, $LT(\phi) := \max\{LT, TS(m)\} + 1$
 - If message m is sent in ϕ, then m gets timestamp $TS(m) = LT(\phi)$ (after updating)
Theorem 230. Let α be an execution and ϕ, ϕ' be two comp-events in α. If $\phi \xrightarrow{\alpha} \phi'$ then $LT(\phi) < LT(\phi')$.
Logical Clocks (2)

Theorem 230. Let α be an execution and ϕ, ϕ' be two comp-events in α. If $\phi \xrightarrow{\alpha} \phi'$ then $LT(\phi) < LT(\phi')$.

Proof. We only have to check all cases of the happened-before relation:

- If ϕ and ϕ' occur on the same processor, $LT(\phi) < LT(\phi')$ holds since logical time is monotonically increasing at every processor.
- If ϕ sends message m and ϕ' receives m, then $LT(\phi')$ is at least one larger than $LT(\phi)$.
- $LT(\phi) < LT(\phi')$ for events that depend transitively on each other follows from transitivity of $<$.
Principle Vector Clocks

Employ elaborate timestamps $VC(\phi)$ of event ϕ:

- Reflexive closure \rightarrow_r of happens-before:
 \[\phi \rightarrow_r \phi' \iff (\phi \rightarrow \phi') \lor (\phi = \phi') \]

- Use entire causal past $\downarrow \phi = \{ \phi' | \phi' \rightarrow_r \phi \}$ of event ϕ as its timestamp $VC(\phi)$

- Encode $VC(\phi)$ as a vector of n integers, the i-th component holding the index c_i of the last comp-event ϕ^c_i at p_i with $\phi^c_i \rightarrow_r \phi$

Define partial ordering of VC:

- $VC \leq VC' \equiv VC[k] \leq VC'[k]$ for $1 \leq k \leq n$,
- $VC < VC' \equiv (VC \neq VC') \land (VC \leq VC')$,
- VC, VC' incomparable if $(VC \not\leq VC') \land (VC' \not\leq VC)$
Implementing Vector Clocks

Every process maintains a vector clock $VC_i = (c_1, \ldots, c_n)$ that is used for timestamping events.

- Initially, $VC_i = (0, \ldots, 0)$
- VC_i is updated in each comp-event ϕ_i at p_i to $VC(\phi_i)$ as follows:
 - If message m with timestamp $TS(m)$ is received in ϕ_i, then
 - $\forall j \neq i : VC_i(\phi_i)[j] := \max\{VC_i[j], TS(m)[j]\}$
 - $VC_i(\phi_i)[i] := \max\{VC_i[i], TS(m)[i]\} + 1$
 - if message m is sent in ϕ_i, then m is timestamped with $VC_i(\phi_i)$ (after updating)
- Abbreviate $VC(\phi) = VC_i(\phi)$, where p_i is the processor where ϕ occurs
Properties Vector Clocks (I)

Basic properties:

- $VC_i(\phi_i)[i]$ holds number of events at p_i up to and including ϕ_i

- $VC_i(\phi_i)[j], j \neq i$, holds

 - The index $VC_j(\phi_j)[j]$ of the last event ϕ_j at p_j that causally precedes ϕ_i [there is a chain of messages ”connecting” ϕ_j and ϕ_i]

- $= \text{number of events at } p_j \text{ that causally precede } \phi_i$

- $VC_j(\phi_j)[i] \leq VC_i(\phi_i)[i]$ for every $\phi_j \in (\downarrow \phi_i)$, since only p_i can increase the $[i]$-th coordinate

- $|\downarrow \phi_i| = \sum_{j=1}^{n} VC_i(\phi_i)[j]$ is the total number of events that causally precede $\phi_i + 1$ [due to reflexivity].
Properties Vector Clocks (II)

Theorem 234. Let \(\alpha \) be an execution and \(\phi, \phi' \) be two comp-events in \(\alpha \). Vector clocks satisfy the following properties:

- **Strong clock condition:** \(\phi \xrightarrow{\alpha} \phi' \iff VC(\phi) < VC(\phi') \)

- **Simple strong clock condition** (if \(\phi_i \) and \(\phi_j \) occur at different processors \(p_i \neq p_j \)): \(\phi_i \xrightarrow{\alpha} \phi_j \iff VC_i(\phi_i)[i] \leq VC_j(\phi_j)[i] \)

- **Concurrency:**
 \[\phi ||_{\alpha} \phi' \iff (VC(\phi) \not\leq VC(\phi')) \land (VC(\phi') \not\leq VC(\phi)) \]
 (incomparable vector clock timestamps)

- **Simple concurrency** (if the events \(\phi_i \) and \(\phi_j \) occur at different processors \(p_i \neq p_j \)):
 \[\phi_i ||_{\alpha} \phi_j \iff (VC_i(\phi_i)[i] > VC_j(\phi_j)[i]) \land (VC_j(\phi_j)[j] > VC_i(\phi_i)[j])\]
Properties Vector Clocks (III)

Proof. The direction $\phi \xrightarrow{\alpha} \phi' \Rightarrow VC(\phi) < VC(\phi')$ follows easily from applying the definition of VC to the three cases of the happened-before relation (similar to the proof of the logical clocks).

To show $VC(\phi) < VC(\phi') \Rightarrow \phi \xrightarrow{\alpha} \phi'$, we assume $VC(\phi) < VC(\phi')$ but $\phi \not\xrightarrow{\alpha} \phi'$ and distinguish 2 cases:

1. If $\phi' \xrightarrow{\alpha} \phi$, direction \Rightarrow of the strong clock condition (see above) reveals $VC(\phi') < VC(\phi)$, which contradicts our assumption.

2. If $\phi \parallel \phi'$ are concurrent, $\phi = \phi_i$ and $\phi' = \phi_j$ at $p_i \neq p_j$ and $VC(\phi_i) < VC(\phi_j)$

 - If $VC(\phi_i)[i] = \ell$, then $VC(\phi_j)[i] < \ell$ since otherwise $\phi_i \in (\downarrow \phi_j)$, which contradicts $\phi_i \parallel \phi_j$.

 - Still, $VC(\phi_j)[i] < \ell = VC(\phi_i)[i]$ contradicts $VC(\phi_i) < VC(\phi_j)$.
Properties Vector Clocks (IV)

Proof. (cont.)

Finally,

1. the proof of the simple strong clock condition is a simple adaption of the above proof
2. the concurrency properties are immediate corollaries of the strong and simple strong clock conditions.
Properties Vector Clocks (V)

Weak gap detection property:

- If $VC_i(\phi_i)[k] < VC_j(\phi_j)[k]$ for some $k \neq j$, then $\exists \phi_k$ such that $\neg(\phi_k \xrightarrow{\alpha} \phi_i) \land (\phi_k \xrightarrow{\alpha} \phi_j)$

- Weak gap detection does not allow to conclude $\phi_i \xrightarrow{\alpha} \phi_k \xrightarrow{\alpha} \phi_j$ in general, BUT:
 - If $i = k$, i.e., $\phi_k := \phi_i'$, we have $\neg(\phi_i' \xrightarrow{\alpha} \phi_i) \implies \phi_i \xrightarrow{\alpha} \phi_i'$
 - hence, $\phi_i \xrightarrow{\alpha} \phi_i' \xrightarrow{\alpha} \phi_j$

Checking whether $VC_i(\phi_i)[i] < VC_j(\phi_j)[i]$ for $i \neq j$ allows to detect that some event from p_i is “missing” at p_j
Application of Vector Clocks

Causal broadcast of messages via non-FIFO/unreliable links:

- Timestamp messages with VC [use VCs where only send events increment $VC_i[i]$]
- Before a message can be delivered: Is there some causally preceding message still in transit/lost?
- Exploit VC’s weak gap detection property

A new message M_j from p_j with timestamp VC_j can safely be causal delivered if

- $VC'_i[i] \geq VC_j[i]$ for all $i \neq j$, where VC'_i is timestamp of the last message causally delivered from p_i, and
- $VC'_j[j] = VC_j[j] - 1$
Consider three processes p_0, p_1, p_2 in a distributed control system for a steam pipe:

- p_0 detects “pipe rupture” and sends message m to p_2
- p_1 detects “pressure drop” in pipe and sends alarm message m'
- p_2 gets m' and decides to apply heat, before it gets m

Happened-before relation captures internal causality only:

- Actual message delivery m', m indicates “pressure drop” \rightarrow “pipe rupture”
- In reality “pipe rupture” \rightarrow “pressure drop” due to external causality \Rightarrow delivery order should be m, m'.
Vector clocks are powerful, but

- quite expensive in terms of memory overhead $O(n)$
- Question: Can we do better?
Vector Clocks Memory Complexity

Vector clocks are powerful, but quite expensive in terms of memory overhead $O(n)$.

Question: Can we do better?

We will prove that, in order to capture causality,

- a vector with n entries is mandatory
- a smaller vector would fail in some executions

We consider the following simple execution . . .
VC Memory Complexity Lower-Bound (I)

Consider execution α where every process p_i, $0 \leq i \leq n - 1$,

- sends a single message to all other processors except p_{i-1} (taken mod n), all having the same delay
- messages sent one-by-one, to processors with increasing indices $p_{i+1}, p_{i+2}, \ldots, p_{i-2}$
- messages from other processors are received one-by-one,
 - from processors with decreasing indices $p_{i-1}, p_{i-2}, \ldots, p_{i+2}$
 - only after all messages have been sent by p_i

Let a_i denote p_i’s first send event and b_i the last receive event.
Lemma 242. For every p_i, $0 \leq i \leq n - 1$, in execution α, we have

1. $a_{i+1} b_i \alpha$
2. $a_{i+1} \xrightarrow{\alpha} b_j$ for every $j \neq i$
Lemma 242. For every \(p_i\), \(0 \leq i \leq n - 1\), in execution \(\alpha\), we have

- \(a_{i+1} \parallel_{\alpha} b_i\)
- \(a_{i+1} \xrightarrow{\alpha} b_j\) for every \(j \neq i\)

Proof. From the construction of \(\alpha\), it is immediately apparent that

- there is no transitive causality, since all messages are sent before any message is received
- \(a_{i+1} \parallel_{\alpha} b_i\) follows since \(p_{i+1}\) does not send a message to \(p_i\)
- \(a_{i+1} \xrightarrow{\alpha} b_j\) holds, since
 - both \(a_{i+1}\) and \(b_j\) occur on the same processor in case of \(j = i + 1\)
 - otherwise, a message is sent by \(p_{i+1}\) to \(p_j\) at or after event \(a_{i+1}\), which is received by \(p_j\) at or before \(b_j\)
Theorem 243. If VC is a function that maps every event in α to a k-dimensional real vector in a manner that captures causality, then $k \geq n$.
Theorem 243. If $V C$ is a function that maps every event in α to a k-dimensional real vector in a manner that captures causality, then $k \geq n$.

Proof. Fix some i. Since $a_{i+1} \parallel \alpha b_i$ by the previous lemma,

- $V C(a_{i+1}) \not\subseteq V C(b_i)$ and $V C(b_i) \not\subseteq V C(a_{i+1})$

$\Rightarrow \exists r$ such that $V C(b_i)[r] < V C(a_{i+1})[r]$

Denoting $r = \ell(i)$,

- we have defined a function $\ell : \{0, \ldots, n - 1\} \rightarrow \{0, \ldots, k - 1\}$
- we show $k \geq n$ by showing that ℓ is one-to-one.

\square
Proof. (cont.)

Assume, by way of contradiction that ℓ is not one-to-one, there must be two indices i, j with $\ell(i) = \ell(j) = r$, satisfying

\[VC(b_i)[r] < VC(a_{i+1})[r] \text{ and } VC(b_j)[r] < VC(a_{j+1})[r] \]

By the previous lemma, $a_{i+1} \xrightarrow{\alpha} b_j$ for every $j \neq i$, so

\[VC(b_i)[r] < VC(a_{i+1})[r] \leq VC(b_j)[r] < VC(a_{j+1})[r]. \]

Since $a_{j+1} \xrightarrow{\alpha} b_i$ as well, we should rather have

\[VC(a_{j+1})[r] \leq VC(b_i)[r] \]

\Rightarrow Contradiction.
Applications like
- distributed monitoring & debugging
- global predicate evaluation

need to access the global system state, e.g. for
- displaying some distributed data when hitting a breakpoint
- computing some expression involving distributed data.

Problem with asynchronous systems:
- Concurrency does not allow instantaneous snapshot of global state
- What can we do?
Global State of a Distributed Computation (II)

Cut \(\vec{C} = (c_0, \ldots, c_{n-1}) \) of a distributed computation:

- Made up of initial prefixes \(\phi_i^{c_i} \), of size \(c_i \), of all \(p_i \)'s events
- Frontier of \(\vec{C} \) is \((\phi_0^{c_0}, \phi_1^{c_1}, \ldots, \phi_{n-1}^{c_{n-1}}) \)

Global state \(\Sigma\vec{C} = \Sigma^{c_0, \ldots, c_{n-1}} \) defined by \(\vec{C} \) is \((q_0^{c_0}, q_1^{c_1}, \ldots, q_{n-1}^{c_{n-1}}) \)
Global State of a Distributed Computation (II)

Cut $\vec{C} = (c_0, \ldots, c_{n-1})$ of a distributed computation:

- Made up of initial prefixes $\phi_i^{c_i}$, of size c_i, of all p_i’s events
- Frontier of \vec{C} is $(\phi_0^{c_0}, \phi_1^{c_1}, \ldots, \phi_{n-1}^{c_{n-1}})$
- Global state $\Sigma^{\vec{C}} = \Sigma^{c_0, \ldots, c_{n-1}}$ defined by \vec{C} is $(q_0^{c_0}, q_1^{c_1}, \ldots, q_{n-1}^{c_{n-1}})$

\vec{C} could involve local states $q_i^{c_i}$ and $q_j^{c_j}$, where

- q_j has been sampled so late after sampling q_i that it causally depends on the $c_i + 1$-st event at p_i

\Rightarrow q_i and q_j contain data never seen simultaneously in the real execution

\Rightarrow inconsistent snapshot of distributed data.
Consistent Cuts

A cut \vec{C} is consistent if $\phi_i^{c_i+1} \not\rightarrow \phi_j^{c_j}$ for $0 \leq i, j \leq n - 1$.

Equivalent definitions:

- $\forall e \in \vec{C}, \forall e' \rightarrow_r e \Rightarrow e' \in \vec{C}$ (left-closure)
- $\forall e \in \vec{C} : VC(e) \leq \vec{C}$
- all messages received inside \vec{C} are also sent from within \vec{C}
Consistent Cuts

A cut \vec{C} is consistent if $\phi_{i+1}^{c_i} \not\rightarrow \phi_{j}^{c_j}$ for $0 \leq i, j \leq n - 1$.

Equivalent definitions:

- $\forall e \in \vec{C}, \forall e' \rightarrow_r e \Rightarrow e' \in \vec{C}$ (left-closure)
- $\forall e \in \vec{C}: VC(e) \leq \vec{C}$
- all messages received inside \vec{C} are also sent from within \vec{C}

Lemma 247. A cut \vec{C} is consistent if $VC(\phi_{i}^{c_i})[i] \geq VC(\phi_{j}^{c_j})[i]$, $1 \leq i, j \leq n$.
Consistent Cuts

A cut \vec{C} is consistent if $\phi_i^{c_i+1} \not\rightarrow \phi_j^{c_j}$ for $0 \leq i, j \leq n - 1$.

Equivalent definitions:

1. $\forall e \in \vec{C}, \forall e' \rightarrow_r e \Rightarrow e' \in \vec{C}$ (left-closure)
2. $\forall e \in \vec{C}: VC(e) \leq \vec{C}$
3. all messages received inside \vec{C} are also sent from within \vec{C}

Lemma 247. A cut \vec{C} is consistent if $VC(\phi_i^{c_i})[i] \geq VC(\phi_j^{c_j})[i]$, $1 \leq i, j \leq n$.

Proof. The simple strong clock condition yields

$\phi_i^{c_i+1} \not\rightarrow \phi_j^{c_j} \iff VC(\phi_i^{c_i+1})[i] = VC(\phi_i^{c_i})[i] + 1 > VC(\phi_j^{c_j})[i]$. □
Finding Maximum Consistent Cut

Simple algorithm to determine (unique) maximal consistent cut \(\vec{C} \) preceding some arbitrary cut \(\vec{C}' = (c'_0, \ldots, c'_{n-1}) \):

- Every \(p_i \) starts out from \(c_i = c'_i \), backwards in his event sequence, until \(VC(\phi_i^{c_i}) \leq \vec{C}' \) [or \(c_i = 0 \) if there is none]
- \(\vec{C} = (c_0, \ldots, c_{n-1}) \) made up of those \(c_i \)'s is the sought maximum consistent cut
- Proof of correctness is left as an exercise.
Lattice of Consistent Global States

Lattice of all consistent global states of a distributed computation:

- Global states reachable in a given asynchronous computation
- Generated by all causal shuffles, which correspond to different paths in the lattice
Chandy & Lamport Snapshot Algorithm (I)

Constructs consistent cut of distributed computation on request

Properties:

- Requires FIFO links
- Only a single message sent/received per comp-event
- Assumes that processor p_0 initiates the snapshot
- Constructs consistent global state (q_0, \ldots, q_{n-1})
- Constructs also channel state $\chi_{j,i}$ of link from p_j to p_i (= messages sent by p_j before its snapshot time that arrive after p_i’s snapshot time)
Chandy & Lamport Snapshot Algorithm (II)

Algorithm for processor p_i, $0 \leq i \leq n - 1$:

1. p_0 sends itself a snapshot-message

2. On reception of the first snapshot-message (from process p_f)
 - record own state q_i
 - relay snapshot-message to all p_j, $j \neq i$
 - set p_f’s channel state $\chi_{f,i} = \emptyset$
 - set p_j’s channel state $\chi_{j,i} = \emptyset$ and start recording messages from p_j in $\chi_{j,i}$

3. On reception of additional snapshot-message from process p_s, stop recording messages in $\chi_{s,i}$
Theorem 252. The Chandy & Lamport algorithm constructs a consistent cut and the appropriate channel state.
Theorem 252. The Chandy & Lamport algorithm constructs a consistent cut and the appropriate channel state.

Proof. Consistent cut \vec{C} delivered, since otherwise $\exists i, j : \phi_{j+1} \rightarrow \phi_i$

- \exists chain of messages starting outside \vec{C} (at p_j) and ending inside (at p_i) $\Rightarrow \exists$ message m sent outside \vec{C} and received inside

\Rightarrow Contradiction, since m has been sent after snapshot-message, so must arrive outside the cut by FIFO property as well.

Correct channel state delivered:

- Only messages sent before collecting p_s’s state recorded in $\chi_{s,i}$, since otherwise p_i would have got p_s’s snapshot-message before

- Only a message received after collecting p_i’s state (but before getting p_s’s snapshot-message) is recorded
Clock Synchronization
Hardware Clocks

Extend processor p_i by local hardware clock $H C_i$

- $H C_i : t \rightarrow T$ maps real-time t to clock time T
- $H C_i(t)$ available to p_i’s transition function
- Sequence of clock readings for p_i’s events must be
 - monotonically increasing
 - unbounded for infinite sequences

Many conceivable clocks, with different quality:

- Ideal clocks: $H C_i(t) = t$
- Clocks with drift ρ:
 \[
 (t_2 - t_1)(1 - \rho) \leq H C_i(t_2) - H C_i(t_1) \leq (t_2 - t_1)(1 + \rho)
 \]
- Simple counters: $H C_i(t) = \#\text{comp}_i$-events executed by t
Shifting of Timed Executions

We consider **timed executions** of systems with drift-free clocks $HC_i(t) = t + c_i$, with unknown constant offset c_i:

- Hardware clock readings $HC_i(t^k) = t^k + c_i$ must be consistent with occurrence real-times t^k_i of events ϕ^k_i.
- No message deliver event occurs before its send event.

Shift $\alpha' = shift(\alpha, \vec{x})$ of a timed execution α by some $\vec{x} = (x_0, \ldots, x_{n-1})$:

- Shift all events ϕ_i of p_i (unchanged) in real-time by x_i.
- Event ϕ_i occurring at t_i in α occurs at $t'_i = t_i + x_i$ in α'.
 - Requires $HC'_i(t'_i) = HC'_i(t_i + x_i) = HC_i(t_i)$.
 - Only allowed if no message delivered before sent.
Lemma 256. Let α be a timed execution and $\alpha' = \text{shift}(\alpha, \vec{x})$ for shifting vector \vec{x}, in case of $HC_i(t) = t + c_i$. Then, for any $0 \leq i, j \leq n - 1$,

1. $HC_i'(t) = HC_i(t) - x_i$ (shift right \Rightarrow HC'' behind at same time)
2. every message from p_i to p_j with delay δ in α has delay $\delta' = \delta - x_i + x_j$ in α'
Shifting Lemma

Lemma 256. Let α be a timed execution and $\alpha' = \text{shift}(\alpha, \vec{x})$ for shifting vector \vec{x}, in case of $HC_i(t) = t + c_i$. Then, for any $0 \leq i, j \leq n - 1$,

- $HC'_i(t) = HC_i(t) - x_i$ (shift right $\Rightarrow HC''$ behind at same time)
- every message from p_i to p_j with delay δ in α has delay $\delta' = \delta - x_i + x_j$ in α'

Proof. The first statement follows from

- $HC_i(t) = T = HC'_i(t + x_i)$ by definition
- $HC'_i(t + x_i) = HC''_i(t) + x_i$ by the no drift assumption.

For the second statement, consider message m sent by p_i at real-time t^s and received by p_j at time t^r in α; it has delay $\delta = t^r - t^s$. In α',

- sending occurs at real-time $t^s + x_i$ and reception occurs at $t^r + x_j$
- the delay is $\delta' = t^r + x_j - t^s - x_i = \delta - x_i + x_j$ as asserted.
The Clock Synchronization Problem

Adjusted clock $AC_i(t) = HC_i(t) + adj_i(t)$ of p_i:

- Hardware clock HC_i cannot be manipulated by p_i
- State variable adj_i that can be used to adjust the clock

Properties clock synchronization algorithm with skew ϵ (and no failures): In every admissible execution.

- every processor terminates by some time t_f
- $|AC_i(t) - AC_j(t)| \leq \epsilon$ for $t \geq t_f$ and every pair of processors p_i, p_j

Some additional definitions:

- Precision π such that $|AC_i^{[-1]}(T) - AC_j^{[-1]}(T)| \leq \pi$
- Message delays $\delta \in [d - u, d]$, with uncertainty u
The 2-Processor Case

Very simple approach for synchronizing p_1’s clock to p_0’s:

- p_0 sets $adj_0 = 0$ and sends $T_0 = AC_0(t_0) = HC_0(t_0)$ to p_1 at real-time t_0

- p_1 sets $AC_1(t_1) := T_0 + d - u + X$ at the real-time $t_1 \in [t_0 + d - u, t_0 + d]$ when it gets p_0’s message

- clearly, $AC_0(t_1) = T_0 + (t_1 - t_0) \in T_0 + d - u + [0, u]

Resulting skew $\epsilon = AC_0(t_1) - AC_1(t_1) \in [-X, u - X]$, which is $\epsilon = u/2$ when choosing $X = u/2$

We will show that one cannot do better. In what follows,

- let t be any time after termination

- abbreviate $AC_i(t)$ by AC_i, $AC'_i(t)$ by AC'_i, etc.
2-Processor Lower Bound $\epsilon \geq u/2$

Theorem 259. Any 2-processor clock synchronization algorithm A has a skew ϵ of at least $u/2$.
2-Processor Lower Bound $\epsilon \geq u/2$

Theorem 259. Any 2-processor clock synchronization algorithm \mathcal{A} has a skew ϵ of at least $u/2$.

Proof. Consider admissible timed execution α, where

- all messages $p_0 \rightarrow p_1$ have delay $d - u$, all messages $p_1 \rightarrow p_0$ have delay d
- Since \mathcal{A} has skew ϵ, $AC_0 \geq AC_1 - \epsilon$

Now consider $\alpha' = \text{shift}(\alpha, \bar{x})$ for $\bar{x} = (-u, 0)$:

- α' is admissible, and $AC_1' \geq AC_0' - \epsilon$ since \mathcal{A} has skew ϵ
- By the shifting lemma, $AC_0' = AC_0 + u$ and $AC_1' = AC_1$, which implies $AC_1 \geq AC_0 + u - \epsilon$

Putting the blue inequalities together, we obtain $AC_0 \geq AC_0 + u - 2\epsilon$ and hence $2\epsilon \geq u$.

\[\Box\]
Lemma 260. Consider any admissible timed execution α of a clock synchronization algorithm with skew ϵ, where all messages $p_i \rightarrow p_j$ have delay $d - u$ and all messages $p_j \rightarrow p_i$ have delay d (for $i < j$). For every $1 \leq k \leq n - 1$, $AC_{k-1} \leq AC_k - u + \epsilon$.
Preparation Lemma

Lemma 260. Consider any admissible timed execution α of a clock synchronization algorithm with skew ϵ, where all messages $p_i \rightarrow p_j$ have delay $d - u$ and all messages $p_j \rightarrow p_i$ have delay d (for $i < j$). For every $1 \leq k \leq n - 1$, $AC_{k-1} \leq AC_k - u + \epsilon$.

Proof. Fix any k and consider $\alpha' = shift(\alpha, \vec{x})$ where $x_i = -u$ for $0 \leq i \leq k - 1$ and $x_i = 0$ otherwise.

- α' is admissible since any message from $p_i \rightarrow p_j$ (resp. $p_j \rightarrow p_i$) for $i < j$ has
 - delay $d - u$ (resp. d), as in α, if $j \leq k - 1$ or $i \geq k$
 - delay d (resp. $d - u$) if $i \leq k - 1 < j$
- $AC'_{k} \geq AC'_{k-1} - \epsilon$ since A has skew ϵ
- By the shifting lemma, $AC'_{k-1} = AC_{k-1} + u$ and $AC'_{k} = AC_{k}$, which implies $AC_{k} \geq AC_{k-1} + u - \epsilon$ as asserted.
Theorem 261. Any n-processor clock synchronization algorithm A has a skew ϵ of at least $u\left(1 - \frac{1}{n}\right)$.
Theorem 261. Any \(n\)-processor clock synchronization algorithm \(A\) has a skew \(\epsilon\) of at least \(u\left(1 - \frac{1}{n}\right)\).

Proof. Consider an admissible timed execution \(\alpha\), where for \(i < j\):
- all messages \(p_i \rightarrow p_j\) have delay \(d - u\)
- all messages \(p_j \rightarrow p_i\) have delay \(d\)

From preparation lemma, we know that \(AC_{k-1} \leq AC_k - u + \epsilon\) for any \(1 \leq k \leq n - 1\). Hence,

\[
AC_0 \leq AC_1 - u + \epsilon \leq AC_2 - 2u + 2\epsilon \leq \cdots \\
\leq AC_{n-1} - (n - 1)(u - \epsilon)
\]

In addition, by skew \(\epsilon\) of \(A\), \(AC_{n-1} \leq AC_0 + \epsilon\)

\(\Rightarrow\) \(AC_{n-1} \leq AC_{n-1} - (n - 1)u + n\epsilon\), from where the theorem follows.
We will now show that the lower bound $\epsilon \geq u(1 - 1/n)$ is tight.

Pseudo-code Algorithm 20 for $p_i, 0 \leq i \leq n - 1$:

1. **Initially** $d[i] = 0$

At first computation step:

2. send $HC(t)$ to all processors

On receiving message containing T from p_j:

3. $d[j] := T + d - u/2 - HC(t)$

4. if message has been received from all processors then

5. $adj := \frac{1}{n} \sum_{k=0}^{n-1} d[k]$
Theorem 263. The simple n-processor clock synchronization algorithm has a skew $\epsilon \leq u(1 - \frac{1}{n})$.
Simple n-Proc. Clock Synchronization (II)

Theorem 263. The simple n-processor clock synchronization algorithm has a skew $\epsilon \leq u \left(1 - \frac{1}{n}\right)$.

Proof. Consider any admissible timed execution α, and abbreviate $HC_i = HC_i(t)$ for some time t after termination. From the simple 2-processor case, we know:

- $HC_i + d_i[j] = HC_j + err_i^j$ with $-u/2 \leq err_i^j \leq u/2$
- $HC_i + d_i[k] - HC_j - d_j[k] = err_i^k - err_j^k$ with $-u \leq err_i^k - err_j^k \leq u$

We proceed by evaluating

$$D = |AC_i - AC_j| = \left| HC_i + \frac{1}{n} \sum_{k=0}^{n-1} d_i[k] - HC_j - \frac{1}{n} \sum_{k=0}^{n-1} d_j[k] \right|$$
Proof. (cont.)

Some algebra yields

\[D = \frac{1}{n} \left| HC_i - HC_j - d_j[i] + HC_i + d_i[j] - HC_j + \sum_{k=0}^{n-1} HC_i + d_i[k] - HC_j - d_j[k] \right| \]

\[= \frac{1}{n} \left| -err_j^i + err^j_i + \sum_{k=0, k \neq i,j}^{n-1} (err^k_i - err^k_j) \right| \]

\[\leq \frac{1}{n} \left[u/2 + u/2 + (n - 2)u \right] = u \left(1 - \frac{1}{n} \right) . \]
Simple \(n \)-Proc. Clock Synchronization (III)

Proof. (cont.)

Some algebra yields

\[
D = \frac{1}{n} \left| H C_i - H C_j - d_j[i] + H C_i + d_i[j] - H C_j \right|
\]

\[
+ \sum_{k=0, k \neq i,j}^{n-1} \left| H C_i + d_i[k] - H C_j - d_j[k] \right|
\]

\[
= \frac{1}{n} \left| -err^j_i + err^i_j + \sum_{k=0, k \neq i,j}^{n-1} (err^k_i - err^k_j) \right|
\]

\[
\leq \frac{1}{n} \left[u/2 + u/2 + (n-2)u \right] = u \left(1 - \frac{1}{n} \right).
\]

\(\Box \)
The End