Question 1. Mark the correct statements:

1. (a) The feasibility analysis problem for periodic real-time tasks with period = relative deadline is coNP-hard in the strong sense.
 (b) EDF is an optimal preemptive scheduling policy.
 (c) If problem $P \leq Q$ and problem $Q \leq R$, then $Q \leq P$ as well (symmetry)
 (d) If a given hybrid task set is feasible under preemptive EDF scheduling, then the processor utilization U satisfies $U \leq 1$.

2. (a) The worst-case execution time C_i of a task depends on the scheduler.
 (b) Two jobs of an aperiodic task cannot be released arbitrarily close to each other.
 (c) If tasks τ_i and τ_j share some resource, then job $J_{i,k}$ cannot always preempt $J_{j,\ell}$.

3. (a) Static scheduling is mandatory for off-line scheduling.
 (b) On-line scheduling takes scheduling decisions solely before the system is run.
 (c) A clearvoyant scheduling policy can predict all future task release times.

Question 2.

Fill in the missing word(s).

1. Consider two non-idling schedules S and S' of the same task set T. Then, the processor is idle at time t in S iff ________________

2. The earliest release time of job $J_{i,j}$, $j \geq 1$, of a sporadic task τ_i with sporadicity interval T_i is ________________

3. Any hybrid task set with $\forall i : D_i \geq T_i$ is feasible under preemptive EDF scheduling if and only if the processor utilization U satisfies ________________

Question 3.

Write readable!

1. List two different real-time task dependencies.
2. Give an upper bound formula for the contribution of a periodic task τ_i with period T_i, arbitrary relative deadline D_i and release jitter J_i to the processor demand in the time interval $[t_1,t_2]$.
Answer Key for Exam A

Question 1. Mark the correct statements:

1. (a) The feasibility analysis problem for periodic real-time tasks with period = relative deadline is coNP-hard in the strong sense.
(b) EDF is an optimal preemptive scheduling policy.
(c) If problem \(P \leq Q \) and problem \(Q \leq R \), then \(Q \leq P \) as well (symmetry)
(d) If a given hybrid task set is feasible under preemptive EDF scheduling, then the processor utilization \(U \) satisfies \(U \leq 1 \).

2. (a) The worst-case execution time \(C_i \) of a task depends on the scheduler.
(b) Two jobs of an aperiodic task cannot be released arbitrarily close to each other.
(c) If tasks \(\tau_i \) and \(\tau_j \) share some resource, then job \(J_{i,k} \) cannot always preempt \(J_{j,\ell} \).

3. (a) Static scheduling is mandatory for off-line scheduling.
(b) On-line scheduling takes scheduling decisions solely before the system is run.
(c) A clearvoyant scheduling policy can predict all future task release times.

Question 2.

Fill in the missing word(s).

1. Consider two non-idling schedules \(S \) and \(S' \) of the same task set \(T \). Then, the processor is idle at time \(t \) in \(S \) iff \(\text{it is idle in } S' \).

2. The earliest release time of job \(J_{i,j}, j \geq 1 \), of a sporadic task \(\tau_i \) with sporadicity interval \(T_i \) is \(\sqrt{(j-1)T_i} \).

3. Any hybrid task set with \(\forall i : D_i \geq T_i \) is feasible under preemptive EDF scheduling if and only if the processor utilization \(U \) satisfies \(U < 1 \).

Question 3.

Write readable!

1. List two different real-time task dependencies.

 Answer:
 - Postcedence relations among tasks
 - Resource sharing

2. Give an upper bound formula for the contribution of a periodic task \(\tau_i \) with period \(T_i \), arbitrary relative deadline \(D_i \) and release jitter \(J_i \) to the processor demand in the time interval \([t_1, t_2]\).

 Answer: The contribution is 0 if \(D_i < t_2 - t_1 + J_i \) and otherwise

 \[
 \left(1 + \left\lfloor \frac{t_2 + J_i - D_i - t_1}{T_i} \right\rfloor \right) \cdot C_i.
 \]

1