182.703: Problems in Distributed Computing
(Part 2)
WS 2023

Ulrich Schmid
Institute of Computer Engineering, TU Vienna
Embedded Computing Systems Group E191-02
s@ecs.tuwien.ac.at

TU Wien Informatics
Content (Part 2)

- Advanced Topics in Distributed Algorithms
 - Randomization
 - Self-Stabilization
 - Self-Stabilization in VLSI Circuits
Randomization
Randomization (I)

- Allow algorithms to toss a (biased) coin/dice, and perform different state transitions based on its outcome

- Need to separate variabilities in executions:
 - Variabilities caused by adversary: Message delivery, processor scheduling, failures (subject to admissibility conditions)
 - Variabilities caused by probabilistic choices of the processes
Randomization (II)

- An execution $E=\text{exec}(A,C_0,R)$ of a specific algorithm is determined by
 - the adversary A
 - an initial configuration C_0
 - a sequence of random numbers R obtained by the processes in E

- The adversary maps every execution prefix $E(t)$ to sets of extensions $E'(t')$ of $E(t)$, typically constrained by
 - what information it can actually observe in $E(t)$
 - degree of clairvoyance regarding future random choices
 - how much computational power it has
Randomization (III)

• Common adversaries:
 – **Oblivious** \((C_0 \rightarrow E(\infty))\): Fixes execution beforehand, unaware of random choices by the algorithm
 – **Adaptive on-line**: Knows complete state in prefix \(E(t)\), including random choices taken so far (but not future ones)
 – **Adaptive off-line**: Knows complete state in prefix \(E(t)\), including random choices taken so far and (next) future ones

• Given assertion \(P\) (like “the algorithm terminates”) on executions, a fixed adversary \(A\), and initial config. \(C_0\)
 \[
 \text{Prob}[P] = \text{Prob}[R : \text{exec}(A,C_0,R) \text{ satisfies } P]
 \]
Randomized Consensus

• Adding randomization per se does not circumvent FLP impossibility

• We also need to relax consensus properties. Two possibilities:
 – „Las-Vegas“-Type Randomized Consensus Algorithms
 • Probabilistic termination: Non-faulty processors must decide with some non-zero probability
 • Keep the standard agreement and validity conditions
 – “Monte-Carlo”-Type Randomized Consensus Algorithms
 • Deterministic termination
 • Allow (small) probability for disagreement of terminated processors
Randomized Consensus Algorithm Examples

- Las-Vegas-type binary consensus algorithms (similar to Phase King algorithm):
 1. Decide when there is "overwhelming majority" for a value (but do not terminate, i.e., continue to send own value)
 2. Otherwise, use coin flipping for "symmetry breaking" (i.e., resolving a bivalent configuration) → eventually leads to (1)

- Two variants: Slow/fast expected termination time

- Can be turned into Monte-Carlo-type algorithms, just by letting every process decide (and terminate) at the end of some a priori given round K.

U. Schmid

192.703 PRDC
Simple Randomized Binary Consensus (I)

Code for process p_i:

Initially $r = 1$ and $prefer = p_i$'s input

1. while true do /* loop over phases $r = 1, 2, \ldots */
2. send $<prefer, r>$ to all
3. wait for $n - f$ round r messages
4. if $n - 2f$ rcvd. messages have value v then
 prefer := v; decide v /* but continue */
5. elseif $n - 4f$ rcvd. messages have value v then prefer := v
6. else
 prefer := \begin{cases} 0 \text{ with probability } \frac{1}{2} \\ 1 \text{ with probability } \frac{1}{2} \end{cases}
7. else prefer :=
8. $r := r + 1$

"Overwhelming majority" (alg. requires $n \geq 9f + 1$!)

"Symmetry breaking"
Simple Randomized Binary Consensus (II)

- Requires \(n \geq 9f + 1 \) processes, up to \(f \) may be Byzantine
- Validity follows from **Unanimity Lemma**: If all correct procs that reach phase \(r \) prefer \(v \), then all correct procs decide \(v \) by phase \(r \)
- Agreement follows from **Decision Lemma**: If \(p_i \) decides \(v \) in phase \(r \), then all correct procs decide \(v \) by phase \(r + 1 \)
- Decision in any phase occurs with probability at least \(\rho = 2^{-n} \):
 - Case 1: All correct procs set preference using coin flipping \(\rightarrow \) chose same \(v \) with probability at least \(2 \cdot 2^{-n} \) (either \(v=0 \) or \(v=1 \))
 - Case 2: Some correct procs do not use coin flipping \(\rightarrow \)
 - all of those set their preference to same value \(v \), as pigeon hole argument reveals that \(2(n-4f-f) > n - f \) correct processes would be required for choosing both 0 and 1 in line 6
 - all remaining procs choose same \(v \) with probability at least \(2^{-n} \)

- The latter implies Termination within an expected number of phases = \(2^n \) – this is quite bad …
Implementing a Common Coin

• Randomization also allows to implement a **common coin** (also called **shared coin**):
 – All processes toss (suitably biased) local coins
 – Exchange tossed values among all processes
 – Produce the **same outcome at all processes** with large (ideally constant) probability ρ

• Very effective for fast (probabilistic) symmetry breaking

• Effort needed for implementation depends on power of adversary
Simple Implementation of Common Coin (I)

• Building block for exchanging values: \(V := f\text{-cast}(v) \)
 - Disseminates local value \(v_i \), of all processes \(p_i \), as consistently as possible
 - Returns set (array) \(V \) holding the value disseminated by every process (or \(\bot \))

• \(f\text{-cast} \) uses 3 asynchronous rounds \(n \geq 2f + 1 \), up to \(f \geq 1 \) crashes):
 - First round:
 • Send \(v \) to all
 • Wait for \(n - f \) first round messages
 - Second round:
 • Send values received in first round to all
 • Wait for \(n - f \) second round messages
 • Merge data from second round messages
 - Third round:
 • Send values received in second round to all
 • Wait for \(n - f \) third round messages
 • Merge data from third round messages and return resulting set \(V \)

Note: Different processes may see \(n - f \) different processes here
\(\Rightarrow \) returned arrays \(V_j \) may differ!

But one can prove:
Every returned \(V_j \) contains \(v_i \) of all \(p_i \in C \), where \(|C| \geq n - f > n/2 \)
\(\Rightarrow \bigcap V_j > n/2 \)
Simple Implementation of Common Coin (II)

- Consider system of $n \geq 2f + 1$ processes, up to f may crash
- Weak adversary: Cannot determine procs most recent coin-flip
- Implementation of common-coin(), with bias $\rho = \frac{1}{4}$:

```
c := \begin{cases} 
0 & \text{with probability } \frac{1}{n} \\
1 & \text{with probability } 1 - \frac{1}{n} 
\end{cases}

coins := f\text{-cast}(c) \quad \text{// Note: } \bot = 1

\text{if there exists } j \text{ s.t. } coins[j] = 0 
\text{then return } 0 
\text{else return } 1
```

Calculate $P[1]=\text{Prob}[\text{return }=1]$:

- $(1-1/n)^n \to 1/e$ monotonically incr.
- $P[1] \geq (1-1/n)^n \geq \frac{1}{4}$ (for $n=2$)

Calculate $P[0]=\text{Prob}[\text{return }=0]$:

- If some $p_i \in C$ (where $|C| > n/2$) chose $c_i=0 \Rightarrow$ every proc returns 0
- $P[0] \geq 1 - (1-1/n)^{|C|}$
- $> 1 - (1-1/(2|C|))^{|C|}$
- $\geq 1 - e^{-1/2} > \frac{1}{4}$
Improved Randomized Binary Consensus (I)

Code for process p_i:
Initially $r = 1$ and $prefer = p_i$'s input

1. while true do /* loop over phases $r = 1, 2, ... */
2. votes := f-cast($<VOTE, prefer, r>$)
3. let v be majority of phase r votes
4. if all phase r votes are v then decide v /* but continue */
5. outcomes := f-cast($<OUTCOME, v, r>$)
6. if all phase r outcome values are w
7. then $prefer := w$
8. else $prefer := common-coin()$
9. $r := r + 1$

Ensures a high level of consistency w.r.t. what different procs get

Symmetry breaking
Improved Randomized Binary Consensus (II)

- Requires \(n \geq 2f + 1 \) processes, up to \(f \) may crash (provably optimal)

- Validity follows from **Unanimity Lemma**: If all procs that reach phase \(r \) prefer \(v \), then all nonfaulty procs decide \(v \) by phase \(r \)

- Agreement follows from **Decision Lemma**: If \(p_i \) decides \(v \) in phase \(r \), then all nonfaulty procs decide \(v \) by phase \(r + 1 \)

- Decision in any phase occurs with probability at least \(\rho = \frac{1}{4} \):
 - Case 1: All correct procs set preference using common-coin \(\Rightarrow \) chose same \(v \) with probability \(2\rho \) (either \(v=0 \) or \(v=1 \))
 - Case 2: Some correct procs do not use common-coin \(\Rightarrow \)
 - all of those saw **same** unanimous value \(v \) and set preference to it
 - all remaining procs choose same \(v \) with probability \(\rho \)

- The latter implies Termination within an expected number of phases \(1/\rho = 4 \) – quite good!
Further Reading

Food for Thoughts …

1. Prove the Decision Lemma (Slide 10) for the simple randomized binary Byzantine consensus algorithm.

2. Consider a simplified implementation of f-cast, which returns the array V already at the end of round 2 (i.e., round 3 is dropped).

 Prove that every returned V contains v_i of all $p_i \in \mathcal{C}$, where $|\mathcal{C}| > n-2f$, provided that $n \geq 2f+1$ and $f \geq 1$ processes may crash.

3. For the original 3-round version of f-cast, prove that every returned V contains v_i of all $p_i \in \mathcal{C}$, where $|\mathcal{C}| \geq n-f$, provided that $n \geq 2f+1$ and $f \geq 1$.
Self-Stabilization
Motivation (I)

• Admissible execution for $f=1$ Byzantine process failures:

• What if faults are transient (i.e., „go away“)?
 – Above execution obviously still admissible
 – Not the case if another fault occurs, despite the fact that there is only one faulty process at every time
Motivation (II)

- Self-stabilizing distributed algorithms:

- Recovers even from totally corrupted state:
 - Convergence: Reaches legal state within stabilization time
 - Closure: Remains within set of legal states afterwards
 - No (further) transient failure during stabilization allowed
Classification of States/ Executions

- **SS**: No initial state \rightarrow **Suffixes** replace correct/incorrect execs
 - Legal (satisfy specification),
 - Pseudo-legal (appear legal for finite time)
 - Incorrect (violate specification)

- **Partitioning of system states**:
 - **Legal states**: Any execution starting from it is legal
 - **Safe states**: Any outgoing transition leads to a legal state
 - **Pseudo-legal states**: Any execution starting from it has a legal suffix (may finitely often reach erroneous state, though!)
Variants of Self-Stabilization

- **Classic SS:**
 - Any failure may lead to arb. state
 - No further failures allowed during stabilization

- **Local SS:**
 - Moderate failures lead to states „close to“ safe ones
 \[\rightarrow \text{fast stabilization} \]

- **Fault-tolerant SS:**
 - Only excessive failures may lead to arbitrary state
 - Restricted number of failures allowed both in legal executions and during stabilization
Dijkstra’s Classic SS Algorithm (I)

- n Processes are arranged in a unidirectional ring
- Dedicated master process p_0
- Goal: Token circulation

- Model of computation:
 - p_i communicates data to p_{i+1} via dedicated virtual R/W register R_i
 - In one atomic step, p_i can
 - read R_{i-1}
 - compute locally
 - write R_i
 - Process scheduler: Fair one-by-one ("central daemon")

- p_i‘s local state consists solely of an integer (ranging from 0 to $K - 1$), stored in R_i
- We choose: $K = n + 1$
Dijkstra’s Classic SS Algorithm (II)

• Legal execution suffix LE for token circulation problem:
 – Every $E \in LE$ must be admissible
 – In every configuration in E, only one processor holds the token (= safe configuration)
 – Every processor holds the token infinitely often in E

• Processor p_i holds the token if
 – $p_i = p_0 : R_0 = R_{n-1}$
 – $p_i \neq p_0 : R_i \neq R_{i-1}$

• Applications:
 – Token passing rings
 – Mutual exclusion
Dijkstra’s Classic SS Algorithm (III)

Code for p_0:

```plaintext
while true do
    if $R_0 = R_{n-1}$ then
        $R_0 := (R_0 + 1) \mod K$
    endif
endwhile
```

Code for $p_i, i \neq 0$:

```plaintext
while true do
    if $R_i \neq R_{i-1}$ then
        $R_i := R_{i-1}$
    endif
endwhile
```

Only p_0 can increment values!
Dijkstra‘s Classic SS Algorithm (IV)

• **Some obvious facts:**
 – If all registers are equal in a configuration, then the configuration is safe
 – In every configuration, there is at least one integer in \{0, \ldots, n\} that does not appear in any register since we only have \(n\) processes

• **Lemma:** In every admissible execution (starting from any configuration), \(p_0\) holds the token (and thus changes \(R_0\)) at least once during every \(n\) complete ring cycles.

• **Proof:**
 – Suppose in contradiction there is a segment of \(n\) cycles in which \(p_0\) does not change \(R_0\)
 – Once \(p_1\) takes a step in the first cycle, \(R_1 = R_0\), and this equality remains true
 – …
 – Once \(p_{n-1}\) takes a step in the \((n-1)\)-st cycle, \(R_{n-1} = R_{n-2} = \ldots = R_0\)
 – So when \(p_0\) takes a step in the \(n\)-th cycle, it will change \(R_0\), contradiction.
Dijkstra's Classic SS Algorithm (V)

• **Theorem:** In any admissible execution starting at any configuration C, a safe configuration is reached within $O(n^2)$ complete cycles.

• **Proof:**
 - Let j be a value not in any register in configuration C
 - By our lemma, p_0 changes R_0 (by incrementing it) at least once every n cycles
 - Thus eventually R_0 holds j, in configuration D, after at most $O(n^2)$ cycles
 - Since other processes only copy values, no register holds j between C and D
 - After at most n more cycles, the value j propagates around the ring from p_0 to p_{n-1}.
Food for Thoughts

(1) Show that Dijkstra‘s algorithm works also if $K = n$, i.e., equal to the number of processors for $n \geq 3$.

(2) Show (by means of a counterexample) that this is no longer true for $K = n - 2$, i.e., two less than the number of processors n.

Further Reading

Self-Stabilization in VLSI Circuits
Radiation-induced Transient Failures (I)

• Sources of cosmic radiation generate high energy (GeV-TeV) charged particles (electrons, protons, nuclei):
 – Rotating neutron stars (pulsars)
 – Supernovae
 – Double star systems
 – Galactic centers, black holes
 – Extragalactic sources (quasars)

• Generation/acceleration mechanisms:
 – Acceleration of charged particles in time-varying magnetic fields („cyclotron mechanisms“)
 – Shock wave acceleration, by particle reflection at fast shock waves (e.g. Supernovae explosions)
Radiation-induced Transient Failures (II)

Soft error rates dominate in VLSI!

Powell, 1959

SET \rightarrow SEU

[VPSS13]

U. Schmid
Transient Failures: Single-Event Upsets (SEU)

Example: Muller C-Gate

Fault: particle hit

Normal operation:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(c_{\text{old}})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(c_{\text{old}})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Informal semantics:
- AND for signal transitions
- wait-for-all

Fault flips \(c_{\text{old}}\) in C-Gate:

Failure goes away
Effects of SETs on Asynchronous Circuits

Example: SEU-tolerant ring oscillator

For simplicity:
* Delay-free C-Gates
* Delay-free wires

Normal operation:

Fault-tolerant operation: SEU in C_a
Effects of SETs on Asynchronous Circuits

Example: SEU-tolerant ring oscillator

For simplicity:
* Delay-free C-Gates
* Delay-free wires

Normal operation:

Faulty operation: Pulse injected

Never goes away!
Simple Running Example: Clock Distribution

Multiple synchronized clock sources (FATAL⁺)

Link propagation delays $\epsilon [d^-, d^+]$

Clock distribution network (HEX)

Max. skew σ_0

Max. neighbor skew σ

Nodes 1-3 are stable, Node 4 is faulty
Self-Stabilization

Recovery from arbitrary transient faults

“Correct” state reached from arbitrary initial state
Byzantine Fault-Tolerance

Masking of up to \(f \) arbitrary faults

requires \(f < n/3 \)
Self-Stabilization + Byzantine Tolerance

Recovery from arbitrary transient faults despite $f < n/3$ permanent faults

Transparent masking of $f < n/3$ transient faults
FATAL\(^+\): SS Byz-FT Clock Generation [DFPS12]

SS Pulse Synchronization
Self-stabilizing, but moderate skew, low frequency

Tick Synchronization (like DARTS)
Nominally low skew, high freq., but not self-stabilizing

force node resync
The HEX Grid [DFLPS16]

Synchronized clock sources

Layer

Width (wrap around)

direction of clock propagation

Synchronized clock sources
HEX Algorithm: Firing rules
HEX Algorithm: Firing rules

centrally triggered
HEX Algorithm: Firing rules

right-triggered
HEX Algorithm

Algorithm 1: Pulse forwarding algorithm for nodes in layer $\ell > 0$.

\begin{verbatim}
once received trigger messages from (left and lower left) or (lower left and lower right) or (lower right and right) neighbors do
 broadcast trigger message; // local clock pulse
 sleep for some time within $[T^-, T^+]$;
 forget previously received trigger messages
\end{verbatim}
Analysis Goals

- All message delays non-deterministically in \([d^-,d^+]\), with \(\varepsilon = d^+-d^-
- Initial skews at most \(\sigma_0\)
- What is max. layer \(\ell\) neighbor skew \(\sigma_\ell\)?
Skews (Probabilistic Message Delays)

Simulations:
Skews (Worst Case: Fault-Free)

- $\max\sigma_\ell$ depends on $[d^-,d^+]$, σ_0, layer ℓ and max. width W
- complex „non-local“ worst case scenarios \Rightarrow analysis difficult
Fault-Tolerance

- Single Byzantine-faulty neighbor per node
- Many faulty nodes system-wide
Fault-Tolerance

- Pulse wave propagates around faults
HEX Implementation

\[
[d^- , d^+] = [d_1^- + d_2^- + d_3^- , d_1^+ + d_2^+ + d_3^+]
\]

U. Schmid
Recall: Self-Stabilization

Starting from **arbitrary system state** (e.g., after massive transient faults), we want this:
Does HEX Self-Stabilize?

If nodes in a layer are awake when pulses arrive:

• they are triggered
• they will go to sleep
• they will clear memory when waking up
• they will be awake when the next pulse arrives

=> Self-stabilization (by induction on layers)
Self-Stabilization Despite Byzantine Faults

Consider node p in the following state (e.g. after a transient fault):

- p memorizes pulse
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p goes to sleep
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p → goes to sleep
- next pulse arrives on left
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p → goes to sleep
- next pulse arrives on left
- p wakes up & forgets
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p goes to sleep
- next pulse arrives on left
- p wakes up & forgets
- next pulse arrives on right
Self-Stabilization Despite Byzantine Faults

→ Original HEX algorithm never synchronizes p!

- p memorizes pulse
- faulty node triggers p goes to sleep
- next pulse arrives on left
- p wakes up & forgets
- next pulse arrives on right
- repeat
Self-Stabilization Despite Byzantine Faults

Fix for HEX-Algorithm: “Forget” pulses after a while

Algorithm 1: Pulse forwarding algorithm for nodes in layer $\ell > 0$.

\begin{algorithm}
\begin{itemize}
\item \textbf{upon receiving trigger message from neighbor} \textbf{do}
 \begin{itemize}
 \item \textbf{memorize message for} $\tau \in [T_{\text{link}}^-, T_{\text{link}}^+]$ \textbf{time};
 \end{itemize}
\item \textbf{upon having memorized trigger messages from (left and lower left) or (lower left and lower right) or (lower right and right) neighbors} \textbf{do}
 \begin{itemize}
 \item broadcast trigger message; // local clock pulse
 \item sleep for $\tau \in [T_{\text{sleep}}^-, T_{\text{sleep}}^+]$ \textbf{time};
 \item forget previously received trigger messages;
 \end{itemize}
\end{itemize}
\end{algorithm}

Also improves stabilization time
The End
(Part 2)
References

 (doi:10.1016/j.jcss.2016.03.001)