Content (Part 2)

- Advanced Topics in Distributed Algorithms
 - Randomization
 - Self-Stabilization
 - Self-Stabilization in VLSI Circuits
Randomization
Randomization (I)

- Allow algorithms to toss a (biased) coin/dice, and perform different state transitions based on its outcome.

- Need to separate variabilities in executions:
 - Variabilities caused by adversary: Message delivery, processor scheduling, failures (subject to admissibility conditions)
 - Variabilities caused by probabilistic choices of the processes
Randomization (II)

- An execution $E={exec(A,C_0,R)}$ of a specific algorithm is determined by
 - the adversary A
 - an initial configuration C_0
 - a sequence of random numbers R obtained by the processes in E

- The adversary maps every execution prefix $E(t)$ to sets of extensions $E'(t')$ of $E(t)$, typically constrained by
 - what information it can actually observe in $E(t)$
 - degree of clairvoyance regarding future random choices
 - how much computational power it has
Randomization (III)

- Common adversaries:
 - **Oblivious** ($C_0 \rightarrow E(\infty)$): Fixes execution beforehand, unaware of random choices by the algorithm
 - **Adaptive on-line**: Knows complete state in prefix $E(t)$, including random choices taken so far (but not future ones)
 - **Adaptive off-line**: Knows complete state in prefix $E(t)$, including random choices taken so far and (next) future ones

- Given assertion P (like “the algorithm terminates”) on executions, a fixed adversary A, and initial config. C_0
 \[
 \text{Prob}[P] = \text{Prob}[R : \text{exec}(A, C_0, R) \text{ satisfies } P]
 \]
Randomized Consensus

- Adding randomization per se does not circumvent FLP impossibility

- We also need to relax consensus properties. Two possibilities:
 - „Las-Vegas“-Type Randomized Consensus Algorithms
 - Probabilistic termination: Non-faulty processors must decide with some non-zero probability
 - Keep the standard agreement and validity conditions
 - “Monte-Carlo”-Type Randomized Consensus Algorithms
 - Deterministic termination
 - Allow (small) probability for disagreement of terminated processors
Randomized Consensus Algorithm Examples

• Las-Vegas-type binary consensus algorithms (similar to Phase King algorithm):
 (1) Decide when there is „overwhelming majority“ for a value (but do not terminate, i.e., continue to send own value)
 (2) Otherwise, use coin flipping for „symmetry breaking“ (i.e., resolving a bivalent configuration) \(\rightarrow\) eventually leads to (1)

• Two variants: Slow/fast expected termination time

• Can be turned into Monte-Carlo-type algorithms, just by letting every process decide (and terminate) at the end of some a priori given round \(K\).
Simple Randomized Binary Consensus (I)

Code for process p_i:
 Initially $r = 1$ and $prefer = p_i$'s input
1. while true do /* loop over phases $r = 1, 2, \ldots$ */
2. send $<prefer, r>$ to all
3. wait for $n - f$ round r messages
4. if $n - 2f$ rcvd. messages have value v then
5. $prefer := v$; decide v /* but continue */
6. elseif $n - 4f$ rcvd. messages have value v then $prefer := v$
7. else $prefer := \begin{cases}
0 \text{ with probability } \frac{1}{2} \\
1 \text{ with probability } \frac{1}{2}
\end{cases}$
8. $r := r + 1$

“Overwhelming majority”
(alg. requires $n \geq 9f + 1$!)

“Symmetry breaking”
Simple Randomized Binary Consensus (II)

• Requires \(n \geq 9f + 1 \) processes, up to \(f \) may be Byzantine

• Validity follows from Unanimity Lemma: If all correct procs that reach phase \(r \) prefer \(v \), then all correct procs decide \(v \) by phase \(r \)

• Agreement follows from Decision Lemma: If \(p_i \) decides \(v \) in phase \(r \), then all correct procs. decide \(v \) by phase \(r + 1 \)

• Decision in any phase occurs with probability at least \(\rho = 2^{-n} \):
 – Case 1: All correct procs set preference using coin flipping \(\rightarrow \) chose same \(v \) with probability at least \(2 \cdot 2^{-n} \) (either \(v=0 \) or \(v=1 \))
 – Case 2: Some correct procs do not use coin flipping \(\rightarrow \)
 • all of those set their preference to same value \(v \), as pigeon hole argument reveals that \(2(n-4f-f) > n - f \) correct processes would be required for choosing both 0 and 1 in line 6
 • all remaining procs choose same \(v \) with probability at least \(2^{-n} \)

• The latter implies Termination within an expected number of phases = \(2^n \) – this is quite bad …
Implementing a Common Coin

- Randomization also allows to implement a common coin (also called shared coin):
 - All processes toss (suitably biased) local coins
 - Exchange tossed values among all processes
 - Produce the same outcome at all processes with large (ideally constant) probability ρ

- Very effective for fast (probabilistic) symmetry breaking

- Effort needed for implementation depends on power of adversary
Simple Implementation of Common Coin (I)

• Building block for exchanging values: \(V := f\text{-cast}(v) \)
 – Disseminates local value \(v_i \), of all processes \(p_i \), as consistently as possible
 – Returns set (array) \(V \) holding the value disseminated by every process (or \(\bot \))

• \(f\text{-cast} \) uses 3 asynchronous rounds \((n \geq 2f + 1, \text{up to } f \geq 1 \text{ crashes}) \):
 – First round:
 • Send \(v \) to all
 • Wait for \(n - f \) first round messages
 – Second round:
 • Send values received in first round to all
 • Wait for \(n - f \) second round messages
 • Merge data from second round messages
 – Third round:
 • Send values received in second round to all
 • Wait for \(n - f \) third round messages
 • Merge data from third round messages and return resulting set \(V \)

Note: Different processes may see \(n - f \) different processes here
\(\Rightarrow \) returned arrays \(V_j \) may differ!

But one can prove:
Every returned \(V_j \) contains \(v_i \) of all \(p_i \in C \), where \(|C| \geq n - f > n/2 \)
\(\Rightarrow \cap V_j > n/2 \)
Simple Implementation of Common Coin (II)

- Consider system of $n \geq 2f + 1$ processes, up to f may crash
- **Weak adversary:** Cannot determine procs most recent coin-flip
- **Implementation of common-coin**, with bias $\rho = \frac{1}{4}$:

```
c := \begin{cases} 
0 \text{ with probability } 1/n \\
1 \text{ with probability } 1 - 1/n 
\end{cases}
```

```
coins := f-\text{cast}(c) \quad // \text{Note: } \bot = 1
```

- if there exists j s.t. $\text{coins}[j] = 0$
 - then return 0
 else return 1

Calculate $P[1] = \text{Prob}[\text{return} = 1]$:
- $(1 - 1/n)^n \to 1/e$ monotonically incr.
- $P[1] \geq (1 - 1/n)^n \geq \frac{1}{4}$ (for $n=2$)

Calculate $P[0] = \text{Prob}[\text{return} = 0]$:
- If some $p_i \in \mathcal{C}$ (where $|\mathcal{C}| > n/2$) chose $c_i = 0 \Rightarrow$ every proc returns 0
- $P[0] \geq 1 - (1 - 1/n)^{|\mathcal{C}|}$
 $$\geq 1 - (1 - 1/(2|\mathcal{C}|))^{|\mathcal{C}|}$$
 $$\geq 1 - e^{-1/2} > \frac{1}{4}$$
Improved Randomized Binary Consensus (I)

Code for process p_i:

Initially $r = 1$ and $\text{prefer} = p_i$'s input

1. while true do /* loop over phases $r = 1, 2, \ldots */
2. \[\text{votes} := \text{f-cast}(<\text{VOTE}, \text{prefer}, r>) \]
3. \[\text{let } v \text{ be majority of phase } r \text{ votes} \]
4. \[\text{if all phase } r \text{ votes are } v \text{ then decide } v /* \text{ but continue } */ \]
5. \[\text{outcomes} := \text{f-cast}<\text{OUTCOME}, v, r> \]
6. \[\text{if all phase } r \text{ outcome values are } w \]
7. \[\text{then } \text{prefer} := w \]
8. \[\text{else } \text{prefer} := \text{common-coin()} \]
9. \[r := r + 1 \]

Ensures a high level of consistency w.r.t. what different procs get

Symmetry breaking
Improved Randomized Binary Consensus (II)

- Requires $n \geq 2f + 1$ processes, up to f may crash (provably optimal)
- Validity follows from **Unanimity Lemma**: If all procs that reach phase r prefer v, then all nonfaulty procs decide v by phase r
- Agreement follows from **Decision Lemma**: If p_i decides v in phase r, then all nonfaulty procs. decide v by phase $r + 1$
- Decision in any phase occurs with probability at least $\rho = \frac{1}{4}$:
 - Case 1: All correct procs set preference using common-coin \rightarrow chose same v with probability 2ρ (either $v=0$ or $v=1$)
 - Case 2: Some correct procs do not use common-coin \rightarrow
 - all of those saw **same** unanimous value v and set preference to it
 - all remaining procs choose same v with probability ρ
- The latter implies Termination within an expected number of phases $1/\rho = 4$ – quite good!
Further Reading

Food for Thoughts …

1. Prove the Decision Lemma (Slide 10) for the simple randomized binary Byzantine consensus algorithm.

2. Consider a simplified implementation of f-cast, which returns the array V already at the end of round 2 (i.e., round 3 is dropped).

 Prove that every returned V contains v_i of all $p_i \in \mathcal{C}$, where $|\mathcal{C}| > n-2f$, provided that $n \geq 2f+1$ and $f \geq 1$ processes may crash.

3. For the original 3-round version of f-cast, prove that every returned V contains v_i of all $p_i \in \mathcal{C}$, where $|\mathcal{C}| \geq n-f$, provided that $n \geq 2f+1$ and $f \geq 1$.

U. Schmid
Self-Stabilization
Motivation (I)

• Admissible execution for $f=1$ Byzantine process failures:

![Diagram showing execution over time](image)

• What if faults are transient (i.e., „go away“)?
 – Above execution obviously still admissible
 – Not the case if another fault occurs, despite the fact that there is only one faulty process at every time
Motivation (II)

• Self-stabilizing distributed algorithms:

 – Convergence: Reaches legal state within stabilization time
 – Closure: Remains within set of legal states afterwards
 – No (further) transient failure during stabilization allowed
Classification of States/Executions

- **SS**: No initial state \(\rightarrow \) **Suffixes** replace correct/incorrect execs
 - Legal (satisfy specification),
 - Pseudo-legal (appear legal for finite time)
 - Incorrect (violate specification)

- **Partitioning of system states**:
 - **Legal states**: Any execution starting from it is legal
 - **Safe states**: Any outgoing transition leads to a legal state
 - **Pseudo-legal states**: Any execution starting from it has a legal suffix (may finitely often reach erroneous state, though!)
Variants of Self-Stabilization

- **Classic SS:**
 - Any failure may lead to arb. state
 - No further failures allowed during stabilization

- **Local SS:**
 - Moderate failures lead to states „close to“ safe ones
 \[\rightarrow\] fast stabilization

- **Fault-tolerant SS:**
 - Only excessive failures may lead to arbitrary state
 - Restricted number of failures allowed both in legal executions and during stabilization
Dijkstra’s Classic SS Algorithm (I)

• n Processes are arranged in a unidirectional ring

• Dedicated master process p_0

• Goal: Token circulation

Model of computation:

- p_i communicates data to p_{i+1} via dedicated virtual R/W register R_i

- In one atomic step, p_i can
 - read R_{i-1}
 - compute locally
 - write R_i

- Process scheduler: Fair one-by-one (“central daemon”)

• p_i‘s local state consists solely of an integer (ranging from 0 to $K - 1$), stored in R_i

• We choose: $K = n + 1$
Dijkstra‘s Classic SS Algorithm (II)

• Legal execution suffix LE for token circulation problem:
 – Every \(E \in LE \) must be admissible
 – In every configuration in \(E \), only one processor holds the token (= safe configuration)
 – Every processor holds the token infinitely often in \(E \)

• Processor \(p_i \) holds the token if
 – \(p_i = p_0 : R_0 = R_{n-1} \)
 – \(p_i \neq p_0 : R_i \neq R_{i-1} \)

• Applications:
 – Token passing rings
 – Mutual exclusion
Dijkstra’s Classic SS Algorithm (III)

Code for p_0:
while true do
 if $R_0 = R_{n-1}$ then
 $R_0 := (R_0 + 1) \mod K$
 endif
endwhile

Code for p_i, $i \neq 0$:
while true do
 if $R_i \neq R_{i-1}$ then
 $R_i := R_{i-1}$
 endif
endwhile

Only p_0 can increment values!

executes atomically
Dijkstra‘s Classic SS Algorithm (IV)

• Some obvious facts:
 – If all registers are equal in a configuration, then the configuration is safe
 – In every configuration, there is at least one integer in \{0, \ldots, n\} that does not appear in any register since we only have n processes

• Lemma: In every admissible execution (starting from any configuration), \(p_0 \) holds the token (and thus changes \(R_0 \)) at least once during every \(n \) complete ring cycles.

• Proof:
 – Suppose in contradiction there is a segment of \(n \) cycles in which \(p_0 \) does not change \(R_0 \)
 – Once \(p_1 \) takes a step in the first cycle, \(R_1 = R_0 \), and this equality remains true
 – …
 – Once \(p_{n-1} \) takes a step in the \((n-1) \)-st cycle, \(R_{n-1} = R_{n-2} = \ldots = R_0 \)
 – So when \(p_0 \) takes a step in the \(n \)-th cycle, it will change \(R_0 \), contradiction.

\[
\begin{align*}
\text{if } R_0 &= R_{n-1} \text{ then } \\
R_0 &:= (R_0 + 1) \mod K
\end{align*}
\]

\[
\begin{align*}
\text{if } R_i &\neq R_{i-1} \text{ then } \\
R_i &:= R_{i-1}
\end{align*}
\]
Dijkstra’s Classic SS Algorithm (V)

• **Theorem:** In any admissible execution starting at any configuration C, a safe configuration is reached within $O(n^2)$ complete cycles.

• **Proof:**
 - Let j be a value not in any register in configuration C
 - By our lemma, p_0 changes R_0 (by incrementing it) at least once every n cycles
 - Thus eventually R_0 holds j, in configuration D, after at most $O(n^2)$ cycles
 - Since other processes only copy values, no register holds j between C and D
 - After at most n more cycles, the value j propagates around the ring from p_0 to p_{n-1}.
Food for Thoughts

(1) Show that Dijkstra’s algorithm works also if $K = n$, i.e., equal to the number of processors for $n \geq 3$.

(2) Show (by means of a counterexample) that this is no longer true for $K = n - 2$, i.e., two less than the number of processors n.
Further Reading

Self-Stabilization in VLSI Circuits
Radiation-induced Transient Failures (I)

• Sources of cosmic radiation generate high energy (GeV-TeV) charged particles (electrons, protons, nuclei):
 – Rotating neutron stars (pulsars)
 – Supernovae
 – Double star systems
 – Galactic centers, black holes
 – Extragalactic sources (quasars)

• Generation/acceleration mechanisms:
 – Acceleration of charged particles in time-varying magnetic fields („cyclotron mechanisms“)
 – Shock wave acceleration, by particle reflection at fast shock waves (e.g. Supernovae explosions)
Soft error rates dominate in VLSI!

[VPSS13]
Transient Failures: Single-Event Upsets (SEU)

Example: Muller C-Gate

Fault: particle hit

Informal semantics:
- AND for signal transitions
- wait-for-all

Normal operation:

Fault flips c_{old} in C-Gate:

Failure goes away
Effects of SETs on Asynchronous Circuits

Example: SEU-tolerant ring oscillator

For simplicity:
* Delay-free C-Gates
* Delay-free wires

Normal operation:

Fault-tolerant operation: SEU in \(C_a \)
Effects of SETs on Asynchronous Circuits

Example: SEU-tolerant ring oscillator

For simplicity:
* Delay-free C-Gates
* Delay-free wires

Normal operation:

Faulty operation: Pulse injected

Never goes away!
Simple Running Example: Clock Distribution

Multiple synchronized clock sources (FATAL$^+$)

Link propagation delays $\epsilon [d^-, d^+]$

Clock distribution network (HEX)

Max. skew σ_0

Max. neighbor skew σ

Nodes 1-3 are stable, Node 4 is faulty
Self-Stabilization

Recovery from arbitrary transient faults \iff \text{“Correct” state reached from arbitrary initial state}
Byzantine Fault-Tolerance

Masking of up to \(f\) arbitrary faults

requires \(f < \frac{n}{3}\)
Self-Stabilization + Byzantine Tolerance

Recovery from arbitrary transient faults despite $f < n/3$ permanent faults

Transparent masking of $f < n/3$ transient faults
FATAL\(^+: \) SS Byz-FT Clock Generation [DFPS12]

SS Pulse Synchronization

Self-stabilizing, but moderate skew, low frequency

Tick Synchronization (like DARTS)

Nominally low skew, high freq., but not self-stabilizing

force node resync
The HEX Grid [DFLPS16]

Layer

Synchronized clock sources

Direction of clock propagation

Width (wrap around)
HEX Algorithm: Firing rules

left-triggered
HEX Algorithm: Firing rules

centrally triggered
HEX Algorithm: Firing rules

right-triggered
HEX Algorithm

Algorithm 1: Pulse forwarding algorithm for nodes in layer $\ell > 0$.

once received trigger messages from (left and lower left) or (lower left and lower right) or (lower right and right) neighbors do

| broadcast trigger message; // local clock pulse
| sleep for some time within $[T^-, T^+]$;
| forget previously received trigger messages

= clock pulses
Analysis Goals

- All message delays non-deterministically in $[d^-,d^+]$, with $\epsilon = d^+ - d^-$
- Initial skews at most σ_0
- What is max. layer ℓ neighbor skew σ_ℓ?
Skews (Probabilistic Message Delays)

Simulations:

![Graph showing skews in probabilistic message delays](graph_image)
Skews (Worst Case: Fault-Free)

- $\text{max } \sigma_\ell$ depends on $[d^{-},d^{+}]$, σ_0, layer ℓ and max. width W
- complex „non-local“ worst case scenarios \Rightarrow analysis difficult
Fault-Tolerance

- Single Byzantine-faulty neighbor per node
- Many faulty nodes system-wide
Fault-Tolerance

- Pulse wave propagates around faults
HEX Implementation

\[[d^-,d^+] = [d1^- + d2^- + d3^-, d1^+ + d2^+ + d3^+] \]

U. Schmid

192.703 PRDC
Recall: Self-Stabilization

Starting from **arbitrary system state** (e.g., after massive transient faults), we want this:
Does HEX Self-Stabilize?

If nodes in a layer are awake when pulses arrive:

- they are triggered
- they will go to sleep
- they will clear memory when waking up
- they will be awake when the next pulse arrives

=> Self-stabilization (by induction on layers)
Self-Stabilization Despite Byzantine Faults

Consider node p in the following state (e.g. after a transient fault):

- p memorizes pulse
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p goes to sleep
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p \implies goes to sleep
- next pulse arrives on left
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p → goes to sleep
- next pulse arrives on left
- p wakes up & forgets
Self-Stabilization Despite Byzantine Faults

- p memorizes pulse
- faulty node triggers p goes to sleep
- next pulse arrives on left
- p wakes up & forgets
- next pulse arrives on right
Self-Stabilization Despite Byzantine Faults

→ Original HEX algorithm never synchronizes p!

- p memorizes pulse
- faulty node triggers p goes to sleep
- next pulse arrives on left
- p wakes up & forgets
- next pulse arrives on right
- repeat
Self-Stabilization Despite Byzantine Faults

Fix for HEX-Algorithm: “Forget” pulses after a while

Algorithm 1: Pulse forwarding algorithm for nodes in layer $\ell > 0$.

upon receiving trigger message from neighbor do
 memorize message for $\tau \in [T_{\text{link}}^-, T_{\text{link}}^+]$ time;
upon having memorized trigger messages from (left and lower left) or (lower left and lower right) or (lower right and right) neighbors do
 broadcast trigger message; // local clock pulse
 sleep for $\tau \in [T_{\text{sleep}}^-, T_{\text{sleep}}^+]$ time;
 forget previously received trigger messages;

Also improves stabilization time
The End
(Part 2)
References