

182.703: Problems in

Distributed Computing
(Part 3)

WS 2019

Ulrich Schmid

Institute of Computer Engineering, TU Vienna

Embedded Computing Systems Group E191-02

s@ecs.tuwien.ac.at

182.703 PRDC 2 U. Schmid

Content (Part 3)

The Role of Synchrony Conditions

Failure Detectors

Real-Time Clocks

 Partially Synchronous Models

Models supporting lock-step round simulations

Weaker partially synchronous models

Dynamic distributed systems

The Role of Synchrony Conditions

U. Schmid 3 182.703 PRDC

Yes
Yes No

Yes ?

No No

Yes
All meet

None meet

No

?

U. Schmid 4 182.703 PRDC

Recall Distributed Agreement (Consensus)

Recall Consensus Impossibility (FLP)

“There is no deterministic algorithm

 for solving consensus in an

asynchronous distributed system

in the presence of a single crash failure.”

Fischer, Lynch und Paterson [FLP85]:

Key problem:

Distinguish slow from dead!

 U. Schmid 5 182.703 PRDC

Consensus Solvability in ParSync [DDS87] (I)

•Processors synchronous / asynchronous

•Communication synchronous / asynchronous

•Message order synchronous (system-wide consistent)

/ asynchronous (out-of-order)

•Send steps broadcast / unicast

•Computing steps atomic rec+send / separate rec, send

182.703 PRDC 6 U. Schmid

Dolev, Dwork and Stockmeyer investigated consensus

solvability in Partially Synchronous Systems (ParSync),

varying 5 Ăsynchrony handlesñ :

182.703 PRDC 7 U. Schmid

async sync

sync

async

Communication

G
lo

b
al

 m
es

sa
g
e

o
rd

er

Consensus Solvability in ParSync [DDS87] (II)

ucast bcast

s+r

s/r
Consensus impossible

Wait-free consensus possible

Consensus possible

for f=1

The Role of Synchrony Conditions

Enforce event ordering

•Distinguish „old“ from „new“

•Ruling out existence of stale

(in-transit) information

•Creating non-overlapping

„phases of operation“ (rounds)

Enable failure detection

•Distinguish slow from dead

182.703 PRDC 8 U. Schmid

Failure Detectors

U. Schmid 9 182.703 PRDC

Failure Detectors [CT96] (I)

•Chandra & Toueg augmented purley asynchronous systems with

(unreliable) failure detectors (FDs):

•Every processor owns a local FD module (an Ăoracleñ – we do

not a priori care about how it is implemented!)

• In every step [of a purely asynchronous algorithm], the FD can be

queried for a hint about failures of other procs

182.703 PRDC 10 U. Schmid

Proc p Proc q Network

Valve

Pressure

Sensor

Failure Detectors [CT96] (II)

• make mistakes – the (time-free!) FD specification

restricts the allowed mistakes of a FD

•FD hierarchy: A stronger FD specification implies

–less allowed mistakes

–more difficult problems to be solved using this FD

–But: FD implementation more demanding/difficult

•Every problem Pr has a weakest FD W:

–There is a purely asynchronous algorithm for solving Pr that

uses W

–Every FD that also allows to solve Pr can be transformed (via a

purely asynchronous algorithm) to simulate W
182.703 PRDC 11 U. Schmid

Example Failure Detectors (I)

•Perfect failure detector P: Outputs suspect list

–Strong completeness: Eventually, every process that crashes is

permanently suspected by every correct process

–Strong accuracy: No process is ever suspected before it crashes

•Eventually perfect failure detector ◊P:

–Strong completeness

–Eventual strong accuracy: There is a time after which correct

processes are never suspected by correct processes

182.703 PRDC 12 U. Schmid

Example Failure Detectors (II)

•Eventually strong failure detector ◊S:

–Strong completeness

–Eventual weak accuracy: There is a time after which some

correct process is never suspected by correct processes

•Leader oracle Ω: Outputs a single process ID

–There is a time after which every not yet crashed process

outputs the same correct process p (the „leader“)

•Both are weakest failure detectors for consensus (with

majority of correct processes)

182.703 PRDC 13 U. Schmid

Consensus with ◊S: Rotating Coordinator

182.703 PRDC 14 U. Schmid

182.703 PRDC 15

Why Agreement? Intersecting Quorums

n=7

p decides v every q changes its estimate to v

f=3

v v v v ┴ ┴ ┴

U. Schmid

Intersecting Quorums:

Implementability of FDs

•If we can implement a FD like Ω or ◊S, we can also

implement consensus (for n > 2f)

•In a purely asynchronous system

–it is impossible to solve consensus (FLP result)

–it is hence also impossible to implement Ω or ◊S

•Back at key question: What needs to be added to an

asynchronous system to make Ω or ◊S implementable?

–Real-time constraints [ADFT04, …]

–Order constraints [MMR03, …]

–???

182.703 PRDC 16 U. Schmid

Food for Thoughts

(1) Starting out from the rotating coordinator consensus

algorithm with ◊S shown above, devise a consensus

algorithm that uses Ω instead of ◊S. (Use Ω in the first

phase to receive only from the process that is

considered leader, and keep in mind that different

receivers may have different leaders for some time.

You thus need some additional effort to make their

estimates the same if somebody decides early.)

(2) Sketch the proof that your algorithm works correctly

in a system of n > 2f processes, where up to f may

crash.

182.703 PRDC 17 U. Schmid

Real-Time Clocks

U. Schmid 18 182.703 PRDC

Distributed Systems with RT Clocks

•Equip every processor p with a local RT clock Cp(t)

•Small clock drift ρ local clocks progress

approximately as real-time, with clock rate Í [1-ρ,1+ ρ]

•End-to-end delay bounds [τ-, τ+], a priori known

182.703 PRDC 19 U. Schmid

Proc p Proc q Network

Valve

Pressure

Sensor

Cp(t) Cq(t)

T 1+ ρ

1− ρ

t

The Role of Real-Time

•Real-time clocks enable both:

•[Show later: Real-time clocks are not the only way …]

182.703 PRDC 20 U. Schmid

Event ordering

Failure detection

Failure Detection: Timeout using RT Clock

status = do_roundtrip(q)

{ send ping to q

 TO := Cp(t) + 5 seconds

 wait until Cp(t) = TO

 if pong did not arrive then

 return DEAD

 else

 return ALIVE

}

182.703 PRDC 21 U. Schmid

p +1 +2 +3 +4 +5

q

5 seconds

ping

t

 set timer

TO before pong:

DEAD

Å the end-to-end delays are at most Ű+ = 2.5 seconds

ÅŰ+ is known a priori [at coding time]

process ping

pong

process pong

TO after pong:

ALIVE

p can reliably detect whether q has been alive recently, if

U. Schmid 22

Event Ordering: Via Clock Synchronization

Internal CS:

• Precision |Cp(t) - Cq(t)| ≤ π

• Progress like RT (small drift ρ)

• CS-Alg must periodically

resynchronize

 T

t

Cp(t)

Cq(t)
≤ π

External CS:

• Accuracy |Cp(t) ï t | ≤ α

• CS-Alg needs access to RT

• External CS internal CS π = 2α

T

t

T = t

t - α

t + α

≥ Cp(t) ≥

α

α

182.703 PRDC

U. Schmid 182.703 PRDC 23

Exchange phase

Internal CS: Generate Periodic Resync Event

 Via sync. clocks

+ no message

overhead

− requires initial

synchrony

 Via message

exchange [ST87]

− message overhead

+ no initial

synchrony required

p
Cp(t1) = P Cp(t2) = 2P Cp(t3) = 3P

q

Cq(t1’) = P Cq(t2’) = 2P Cq(t3’) = 3P

≤ π

p

Cp(tk) = kP

q

Cq(tk’) = kP

Trigger phase

U. Schmid 182.703 PRDC 24

Internal CS: Estimate Remote Clocks

 One-way:

+ 1 message only

− Must know d and ε
(and thus dmax = d + ε)

 Round-trip:

− 2 messages & larger error,

BUT

+ Round-trip time U can be

measured locally → need to

know d only [compute ε]

+ U ≈ 2d → ε ≈ 0

“Probabilistic CS” [Cri89]

p

q
tq

Estimate [at q]:

Cp(tq) = kP+d+ε/2

|Error| ≤ ε/2

d ε

Time ?
Tq

Cp(tk) = kP

Estimate [at p]:

Cq(tp) = kP+2d+ε

|Error| ≤ ε

tq

p

q

Cp(tk) = kP 2d 2ε

 U

tp

kP

Cp(tq)

Cq(tp)

U. Schmid 182.703 PRDC 25

Internal CS: FT Midpoint Algo [LWL88]

p

Cp

q

Cq

Cp

Cq

π Before resync …

π ≤́ π/2 After resync …

 A priori bounded [Ű-, Ű+] allows to estimate all remote clocks

 Discard f largest and f smallest clock readings (could be faulty)

 Set local clock to midpoint of remaining interval

U. Schmid 182.703 PRDC 26

Internal CS in Biological Systems

•Malaccae Fireflies

–Male fireflies emit light pulses ~ once
per second

–Swarm of fireflies eventually flash in
synchrony

•Cardiac ganglion of lobster heart

–Heart activation by synchronized
firing of 4 interneurons

–Ganglion controls activation
frequency within some bounds,
without losing synchrony

–Evolution-optimized strategy: Fault-
tolerance, self-stabilization, etc.

U. Schmid 182.703 PRDC 27

SS+FT Pulse Generation Alg. [DDP03]

•Pulse-coupled oscillators (“integrate-and-fire”)

–Time-decaying refractory function ~ own node’s sense of time

–Time-decaying threshold level ~ perception of pulses from peers

–Pulse is generated [+ refractory function reset] when refractory function

hits threshold level

t

Peers synced Peers not synced

endogenous cycle

U. Schmid 182.703 PRDC 28

SS+FT Clock Sync Algorithm [DDP03b]

•Allows to build linear-time self-stabilizing,

Byzantine fault-tolerant clock sync algorithm, by

–using synchronized pulses as a pacemaker

–employing a self-stabilizing Byzantine agreement

algorithm acting on clock values

•Also solves initial clock synchronization problem

U. Schmid 182.703 PRDC 29

External CS: Global Positioning System (GPS)

•4 satellites required to determine χ = (x, y, z) and Δ

•1 satellite sufficient for Δ if χ is already known

 Satellite clocks
synchronized to
USNO atomic
master clock

 GPS-Receiver
solves system of
equations

 ti+|χ- si|/c+Δ = Ti

Rec. time: t1, t2 (unknown)

Local rec. time: T1, T2

(known)

Time: t1 (known)

3D-pos: s1 (known)

Time: t2 (known)

3D-pos: s2 (known)

Clk.offset Δ = T ï t (unknown)

3D-pos: χ (unknown)
GPS
Rec.

GPS satellites

U. Schmid 182.703 PRDC 30

Why are Synchronized Clocks Useful?

p

Cp(t1) = R Cp(t2) = 2R Cp(t3) = 3R

q
Cq(t1’) = R Cq(t2’) = 2R Cq(t3’) = 3R

≤ π

•Synchronized clocks allow to simulate communication-

closed lock-step rounds via clock time [NT93]:

•Only requirement: R Ó Ű+ + ́holds!

•Lock-step rounds perfect failure detection at end of

rounds

t ≤ Ű+

Perfect FD Lock-Step Round Simulation

•Attempt round simulation at p: Waiting for either

–arrival of round message from q, or

–p‘s instance of P suspects q

•Problem faced by q:

–msgk not received in round k, although p alive after round k

–q even receives msgk+1 in round k+1 in this example

182.703 PRDC 31 U. Schmid

p

q

t

q suspects p

P crashes

msgk msgk+1

round k round k+1
[or q suspects p next]

q trusts p

182.703 PRDC 32 U. Schmid

Using RT Clocks: Deficiencies

•Algorithms like do_roundtrip(.) have system-dependent

time values (unit „seconds“) in their code / variables

not easily portable to e.g. faster hardware

•Fail-operational systems might tolerate occasional loss

of timeliness properties – but never of safety properties

•Unfortunately:

Safety properties like agreement typically rely on the reliable

operation of do_roundtrip(.) and similar primitives

End-to-end delay bounds τ+ that always hold are difficult to

determine in real systems

Try to relax timing assumptions in ParSync models …

Food for Thoughts

(1) Consider the fault-tolerant midpoint algorithm for

computing the clock corrections u=FTM(U) resp.

v=FTM(V) for the given vectors U=(u1,…,un) resp.

V =(v1,…,vn) of n 3f + 1 clock readings (ordered

by process ids). Assume that at least n - f of the

pairs (ui, vi) satisfy

– |ui – vi| ʀ

– |ui – uj| ʌ

– |vi – vj| ʌ

Prove that |u – v| ʌ/2 + 2ʀ.

 182.703 PRDC 33 U. Schmid

182.703 PRDC 34 U. Schmid

Partially Synchronous Models

182.703 PRDC 35 U. Schmid

Recall: Synchronous Model

•„The“ classic model

–Transmission delay bound τ+

–Computing step time bound μ+

–Bounded-drift local clocks available

•Allows (Byzantine-tolerant) implementation of

–Internal clock synchronization

–Lock-step rounds

–etc.

182.703 PRDC 36 U. Schmid

The Timed Asynchronous Model

•Cristian & Fetzer [CF99]:

–Alternating bad and good periods:

•Transmission delay bound τ+

•Computing step time bound μ+

–Reliable bounded-drift local RT clocks available

–Local clocks allow to detect good/bad periods TA algorithms

are always safe and live in good periods

•TA algorithms allow to implement (non-Byzantine) fail-

aware services, including eventual lock-step rounds

182.703 PRDC 37 U. Schmid

Classic Partially Synchronous Models (I)

•„The“ classic ParSync models

Dolev, Dwork & Stockmeyer [DDS87]

Dwork, Lynch & Stockmeyer [DLS88]

Attiya, Dwork, Lynch & Stockmeyer [ADLS94]

•Semi-synchronous model by Ponzio & Strong [PS92]

•Common system parameters:

–Bounded processor speed ratio Φ = μ+/μ-

–Transmission delay bound Δ

•Archimedean model by Vitanyi [Vit84]

–Bounded speed ratio S = τ+/μ-

182.703 PRDC 38 U. Schmid

Classic Partially Synchronous Models (II)

Processes can locally time-out messages:

–The classic ParSync models [DDS87, DLS88] and

[ADLS94] assume

•Δ given in multiples of (unknown) minimal computing step

time μ- [hence τ+ = Δ·μ- real-time seconds]

•spin loop counting f(Φ,Δ) steps allows to time-out messages

[implements local clock with real-time rate Í [1/Φ,1]]

–Archimedean model [Vit84] also allows to time-out

messages via spin-loop for S steps

–Semi-synchonous model [PS92] assumes

•Δ = τ+ given in real-time seconds

•bounded-drift local RT clocks available for timing-out

messages

182.703 PRDC 39 U. Schmid

Classic Partially Synchronous Models (III)

 Variants of ParSync models: System parameters (Δ, Φ)

1. known and hold

from the beginning

2. known and hold from unknown global stabilization time (GST) on

3. unknown and hold from the beginning / from GST on:

Learn (Δ, Φ), by continuously increasing estimate values

182.703 PRDC 40 U. Schmid

Time-Free Message-Timeout in ParSync ?

•Implementation of do_roundtrip(p) in the ParSync models
of [DLS88] or [Vit85]:

•But: No obvious correlation between processor step
times and message delays not really time-free …

{ send ping to p
 for i=1 to x do no-op /* x=f(ǃ, ǔ) resp. x=f(s) is
 dimensionless! */
 if pong did not arrive then
 return DEAD
 else
 return ALIVE
}

The Θ/ABC-Model

In classic ParSync models:

•Timing assumptions are primarily used for ordering

events

•Is it possible to define a time-free ParSync model based

on event ordering in the first place?

For example: Assume that

•only less than Θ roundtrips can occur during any single

round-trip

•Actual duration (D) irrelevant

182.703 PRDC 41 U. Schmid

status = do_roundtrip(q)

{ send ping to q

 for i=1 to Ū do

begin

 send delay_ping(i) to r

 wait for delay_pong(i) from r

 end

 if pong did not arrive then

 return DEAD

 else

 return ALIVE

}

D

p

r

1 2 3 4 5

Ū = 5

q ping pong

182.703 PRDC 42 U. Schmid

The Θ-Model: Bounded E-t-E Delay Ratio

•End-to-end delays of all

messages in transit at t

–minimum τ−(t)

–maximum τ+(t)

• τ+(t) and τ−(t) may vary

arbitrarily with time, but:

•Ratio τ+(t)/τ−(t) bounded by

[known or even unknown]

system parameter Θ

Widder & Schmid [WS09]

182.703 PRDC 43 U. Schmid

Byzantine FT Clock Sync in the Θ-Model

For n ≥ 3f + 1 with up to f Byz. failures:

• Suppose p sends tick(C+1) at time t

• Then, q also sends tick(C+1) by time
t + 2τ+ - τ−

+ Fastest tick-frequency of any p: 1/τ−

Ý Clock ticks occur approximately
synchronously, with precision π(Θ)

 On init
 send tick(0) to all; C := 0;

 If got tick(l) from f +1 nodes and l > C

 send tick(C+1),…, tick(l) to all;

 C := l;

 If got tick(C) from 2f +1 nodes

 send tick(C+1) to all;

 C := C+1;

f + 1

 2f + 1

p at t any q’ at t+Ű+- Űī any q at t+2Ű+- Űī

≤ Ű+- Űī ≤ Ű+

182.703 PRDC 44 U. Schmid

Correlation Coverage Expansion

•Given some bound τ+ and τ− assumed during system design
(as used in synchronous systems), compute Θ = τ+ / τ−

•Unanticipated overload: τ+(t) > τ+

t

end-to-

end

delays

t-

ŭ

t+

Synchronous system out of spec

— if τ+(t) ≤ Θτ−(t), however,

 Θ-system still OK

Note:

• τ+(t) = τ+ + α(t)

• τ −(t) = τ- + α(t)/Θ

sufficient for Θ to hold!

182.703 PRDC 45 U. Schmid

Shortcomings Θ-Model

•Correlation between slow and fast messages need not

exist for all messages

–Some very fast messages [even τ− = 0] may be in transit

somewhere in the system during a slow message

–Correlation and hence coverage expansion does not exist in

such cases

•Need a more relaxed definition of the relation between

slow and fast messages

–All that is actually needed is to constrain the number of fast

messages during a slow one

–No need for a correlation of unrelated messages, and at every

point in time t

182.703 PRDC 46 U. Schmid

The Asynchronous Bounded Cycle Model

 Example: Ū = 4.5

 2 consecutive Ăslowñ
messages

 Cycle with 9 enclosed
Ăfastñ messages

 No larger cycles allowed

Robinson & Schmid [RS08]

ÅThe ABC Model just bounds the ratio of the number of

forward and backward-oriented messages in cycles

ÅNo implicit or explicit reference to real-time

 Messages with τ−(t) = 0 allowed

 No need to relate independent messages in the system

 We proved: Any Ū-algorithm works correctly in the ABC model

182.703 PRDC 47 U. Schmid

FLP

Ūu

Ū

DLSu

Partial Order of ParSync Models

•DLS … [DLS88] with

known Δ, Φ

•Θ … ABC/Θ-Model

with known Θ

•DLSu … [DLS88] with

unknown Δ, Φ

•Θu … ABC/Θ-Model

with unknown Θ

•FLP … asynchronous

FLP-Model

DLS

Even Weaker ParSync Models?

•All the ParSync Models seen so far allow to build

–lock-step rounds, or at least

–eventual lock-step rounds

•Solving consensus is easy here.

•We know that lock-step rounds are stronger than failure

detectors that are sufficient for solving consensus:

–Perfect failure detector P

–Leader oracle Ω

•Are there weaker ParSync models where only such FDs

can be implemented?

 182.703 PRDC 48 U. Schmid

182.703 PRDC 49 U. Schmid

Weaker Partially Synchronous Models

Finite Average Roundtrip-Time Model (I)

Fetzer, Schmid and Süsskraut [FSS04]

–Asynchronous system with crash failures

–Unknown lower bound μ- for computing step time

–Unknown average round-trip time bounds

–RTT(k) and hence τ+ unbounded, yet

–Average after n „Epochs“ is

182.703 PRDC 50 U. Schmid

¤<ä
=¤

n

kn

kRTT
n 1

)(
1

lim

1 2 1 1 3 1 1 1 4 1 RTT:

¤<
+

+
Ö=

--+

+

nn

nn

nnnn

nn

3
2

2/)1()1(

)1(
2

2

Epoch 1 Epoch 2 Epoch 3

Finite Average Roundtrip-Time Model (II)

•The FAR model assumptions

–do not allow to implement lock-step rounds

–do allow to implement the eventually perfect FD P

–can solve consensus if n > 2f

• Key ideas for P implementation:

–Implement weak local clock [via spin-loop] for timing-out

messages

–Time-out roundtrips using adaptive timeout value TV

•If fast RT occurs [before TO]: Increase TV, to prepare for future slow

RTs

•If slow RT occurs [after TO]: (Could) decrease TV, since fast RTs

must eventually follow due to finite average RTT

182.703 PRDC 51 U. Schmid

U. Schmid 182.703 PRDC 52

Weak Timely Link Models (I)

•Partially synchronous processors (Φ) with crash failures

•Almost all communication asynchronous, except:

•At least one process p must be an ◊f-source:

–After some (unknown) time, p has timely links to at least f neighbors
[No message sent at time t is processed after t+τ+ (unknown)]

–Note: A link to a crashed process is timely per definition!

•Allows to implement Ω, and hence solving consensus for n > 2f

•An ◊f-1-source is provably not sufficient

•Currently weakest WTL model [HMSZ09]: A moving ◊f-
source, where the f timely links can change with time

Aguilera, Delporte, Fauconnier, Toueg [ADFT04],
Hutle, Malkhi, Schmid, Zhou [HMSZ09]:

U. Schmid 182.703 PRDC 53

Weak Timely Link Models (II)

•periodically broadcasts heartbeat
message (HB)

• times-out HBs of all neighbors

–using weak local clock [implemented via
step counting in spin-loop]

– timeout value increased on every TO
[= no HB received before expiration]

•broadcasts accusation message
acmsg(q) on every TO for q’s HB

• if n-f acmsg(q) are received, then
increment acc_count[q]

•Ω-output: q with min. acc_count[q]

Ý implementation: Every process

r

ö5-source

p

q

s

t

u

 All processes accuse crashed r
acc_count[r] continuously grows

 5+1 processes never accuse p
incrementing acc_count[p] stops

Even Weaker Models (I)

•Investigate models for weaker problems than

consensus

•Candidate of choice: k-set agreement [Cha93]:

–Input values from finite domain V with |V| > k

–Processes must decide on at most k different output values

system-wide

•Well-known properties:

–Weakening of consensus (= 1-set agreement)

–Requires |f/k˩ + 1 rounds in synchronous systems with up to

f crashes

–Impossible in asynchronous systems if f ≥ k crashes

182.703 PRDC 54 U. Schmid

Even Weaker Models (II)

•k-set agreement allows to further explore the

synchronous/asynchronous solvability border

•There are models where

–k-1-set agreement (hence consensus) is impossible

–k-set agreement is possible

•Two major directions of research:

–Failure detectors

–ParSync models

182.703 PRDC 55 U. Schmid

U. Schmid 182.703 PRDC 67

Dynamic Networks

Dynamic Distributed Systems (DDS)

•Characteristics of DDS

–Unknown/time-varying number of participants

–Time-varying communication topology

–Participants have local knowledge only

•Applications

–Wireless ad-hoc networks, sensor networks

–Biological systems

–Social systems

•Many flavors:

–Lock-step synchronous systems

–Asynchronous systems

U. Schmid 182.703 PRDC 68

Synchronous Systems with Time-Varying

Communication Graphs

U. Schmid 182.703 PRDC 69

p3

p2

p1

p4 p3

p2

p1

p4

p5

p3

p2

p1

p4

p5

Joining/leaving nodes

Appearing/disappearing

links

Network

partitioning

t

Study Agreement Problems

•Consensus

• Processes have local input value and local decision value (initially

undefined)

• Agreement: Processes must decide on a single common output value

system-wide, within some finite termination time

•Weaker problem: k-Set agreement

–k-Agreement: Processes must decide on at most k different output values

system-wide

–Relaxation of consensus agreement property

•Weaker problem: Approximate agreement

–Processes must decide on values that are within ε of each other

–Relaxation of consensus agreement property

182.703 PRDC 70 U. Schmid

Possible Applications

•Approximate agreement:

Clock synchronization

•Gracefully degrading k-set

agreement: Transmission

schedule negotiation

U. Schmid 182.703 PRDC 71

p1

p5

p6

k = 2
p2

p4 p3

p5

Our General Approach

U. Schmid 182.703 PRDC 72

if (..)

 somethinguseful

else

 somethingsmoreuseful

Network assumption

Impossibility Algorithm

Network Assumptions

•Adversarial model:

–Adversary chooses communication graph sequence

–Restricted by network assumptions

•Strong network assumption (e.g. always strongly

connected)

+ Solution algorithms simple

–Assumption coverage in real systems small

•Weak network assumption

–Complex, expensive algorithms (if existing at all)

+ Assumption coverage in real systems large

U. Schmid 182.703 PRDC 73

Solvability/Impossibility Border ?

U. Schmid 182.703 PRDC 74

Model restrictions

Algorithmic complexity

[BRS11] (k-set agreement) [BRSWS18]

Impossibility/solvabiltiy border

182.703 PRDC 77 U. Schmid

© 2007, WDR

The End
(Part 3)

References
• [ADFT03] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On implementing Omega with weak

reliability and synchrony assumptions. In Proceeding of the 22nd Annual ACM Symposium on Principles of Distributed

Computing (PODC’03), pages 306–314, New York, NY, USA, 2003. ACM Press.

• [ADFT04] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Communication-efficient

leader election and consensus with limited link synchrony. In Proceedings of the 23th ACM Symposium on Principles of

Distributed Computing (PODC’04), pages 328–337, St. John’s, Newfoundland, Canada, 2004. ACM Press.

• [ADLS94] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the time to reach agreement in the

presence of timing uncertainty. Journal of the ACM (JACM), 41(1):122–152, 1994.

• [BRS13] Martin Biely, Peter Robinson, Ulrich Schmid. The Generalized Loneliness Detector and Weak System Models for k-set

Agreement. IEEE Transactions on Parallel and Distributed Systems, 2013.

• [BRS11] M. Biely, P. Robinson, and U. Schmid. Solving k-set agreement with stable skeleton graphs. In IPDPS Workshops, pages

1488-1495, 2011.

• [BRSSW18] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler. Gracefully degrading

consensus and k-set agreement in directed dynamic networks. Theoretical Computer Science, 726:41–77, 2018.

(doi:https://doi.org/10.1016/j.tcs.2018.02.019)

• [Cha93] S. Chaudhuri, “More choices allow more faults: set consensus problems in totally asynchronous systems,” Inf. Comput.,

vol. 105, no. 1, pp. 132–158, 1993.

• [CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,

43(2):225–267, March 1996.

• [CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model. IEEE Transactions on Parallel and

Distributed Systems, 10(6):642–657, 1999.

• [Cri89] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3):146--158, 1989.

• [DDP03] Ariel Daliot, Danny Dolev and Hanna Parnas. Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker
Networks. In Proceedings of the 6th International Symposium on Self-Stabilizing Systems (SSS'03), LNCS 2704, 2003, p. 32-48.

182.703 PRDC 78 U. Schmid

References
• [DDP03b] Ariel Daliot, Danny Dolev and Hanna Parnas. Linear Time Byzantine Self-Stabilizing Clock Synchronization. In

Proceedings of the 7th International Conference on Principles of Distributed Systems, LNCS 3144, 2003, p. 7-9. [A revised

version appears in Cornell ArXiv: http://arxiv.org/abs/cs.DC/0608096]

• [DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for distributed consensus.

Journal of the ACM, 34(1):77–97, January 1987.

• [DHS86] Danny Dolev, Joseph Y. Halpern and H. Raymond Strong. On the Possibility and Impossibility of Achieving Clock

Synchronization 32:230-250, 1986.

• [DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal of the

ACM, 35(2):288–323, April 1988.

• [FC97b] Christof Fetzer and Flaviu Cristian. Integrating external and internal clock synchronization. J. Real-Time Systems,

12(2):123--172, March 1997.

• [FSS05] Christof Fetzer, Ulrich Schmid, and Martin Süßkraut. On the possibility of consensus in asynchronous systems with finite

average response times. In Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05),

pages 271–280, Washington, DC, USA, June 2005. IEEE Computer Society.

• [FML86]] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy Impossibility Proofs for Distributed Consensus

Problems, Distributed Computing 1(1), 1986, p. 26—39.

• [FLP85] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.

Journal of the ACM, 32(2):374–382, April 1985.

• [Gaf98] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In Proceedings of the

Seventeenth Annual ACM Symposium on Principles of Distributed Computing, pages 143–152, Puerto Vallarta, Mexico, 1998.

ACM Press.

• [GK09] E. Gafni and P. Kuznetsov, “The weakest failure detector for solving k-set agreement,” in 28th ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing (PODC 2009), 2009.

• [HL02] Jean-Francois Hermant and Gerard Le Lann. Fast asynchronous uniform consensus in real-time distributed systems. IEEE

Transactions on Computers, 51(8):931–944, August 2002..

182.703 PRDC 79 U. Schmid

References
• [HW05] Jean-Francois Hermant and Josef Widder. Implementing reliable distributed real-time systems with the Θ-model. In

Proceedings of the 9th International Conference on Principles of Distributed Systems (OPODIS 2005), volume 3974 of LNCS,

pages 334–350, Pisa, Italy, December 2005. Springer Verlag.

• [HMSZ09] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou. Chasing the weakest system model for implementing

Omega and consensus. IEEE Transactions on Dependable and Secure Computing 6(4), 2009

• [HS97] Dieter Hoechtl and Ulrich Schmid. Long-term evaluation of GPS timing receiver failures. In Proceedings of the 29th IEEE

Precise Time and Time Interval Systems and Application Meeting (PTTI'97), p. 165--180, Long Beach, California, Dec. 1977

• [Lam84] Leslie Lamport. Using Time Instead of Timeout for Fault-Tolerant Distributed Systems. ACM Transactions on

Programming Languages and Systems 6(2), April 1984, p. 254-280

• [LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 4(3):382–401, July 1982.

• [LWL88] Jennifer Lundelius-Welch and Nancy A. Lynch. A new fault-tolerant algorithm for clock synchronization. Information
and Computation, 77(1):1--36, 1988.

• [Mil95] David L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE Transactions on Networks, pages
245--254, June 1995.

• [MMR03] Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous implementation of failure detectors. In
Proceedings of the International Conference on Dependable Systems and Networks (DSN’03), San Francisco, CA, June 22–25,
2003.

• [NT93] Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and Common Knowledge in Distributed Systems. JACM
40(3), April 1993, p. 334-367.

• [PS92] Stephen Ponzio and Ray Strong. Semisynchrony and real time. In Proceedings of the 6th International Workshop on
Distributed Algorithms (WDAG’92), pages 120–135, Haifa, Israel, November 1992.

• [RS08] Peter Robinson and Ulrich Schmid. The Aynchronous Bounded Cycle Model. Proceedings of the 10th Internlation
Symposium on Stailization, Safety and Security of Distribted Systems (SSS‘08), Detroit, USA. Springer LNCS 5340, p. 246-262.

• [Sch86] Fred B. Schneider. A paradigm for reliable clock synchronization. In Proceedings Advanced Seminar of Local Area
Networks, pages 85--104, Bandol, France, April 1986.

182.703 PRDC 80 U. Schmid

References
• [SKMNCK99] Ulrich Schmid, Johann Klasek, Thomas Mandl, Herbert Nachtnebel, Gerhard R. Cadek, and Nikolaus Keroe. A

Network Time Interface M-Module for distributing GPS-time over LANs. J. Real-Time Systems, 18(1), 2000, p. 24-57.

• [ST87] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626--645, July 1987.

• [SWS16] Manfred Schwarz, Kyrill Winkler, and Ulrich Schmid. Fast consensus under eventually stabilizing message adversaries.

In Proceedings of the 17th International Conference on Distributed Computing and Networking, ICDCN '16, pages 7:1-7:10, New

York, NY, USA, 2016. ACM.

• [SWSBR14] M. Schwarz, K. Winkler, U. Schmid, M. Biely, and P. Robinson. Gracefully degrading consensus and k-set

agreement under dynamic link failures. Revised selected papers Third International Conference on Networked Systems

(NETYS'15), Springer LNCS 9466, pages 109-124, Agadir, Morocco, 2015. Springer International Publishing.

• [Vit84] Paul M.B. Vitányi. Distributed elections in an Archimedean ring of processors. In proceedings of the sixteenth annual

ACM symposium on theory of computing, pages 542-547. ACM Press, 1984.

• [WS09] Josef Widder and Ulrich Schmid. The Theta-Model: Achieving Synchrony without Clocks. Distributed Computing 22(19;

2009, p. 29-47

• [WSS19] Kyrill Winkler, Manfred Schwarz, and Ulrich Schmid. Consensus in directed dynamic networks with short-lived

stability. Distributed Computing, 2019. (doi:https://doi.org/10.1007/s00446-019-00348-0)

182.703 PRDC 81 U. Schmid

