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Recall Distributed Agreement (Consensus) 



Recall Consensus Impossibility (FLP) 

“There is no deterministic algorithm 

 for solving consensus in an  

asynchronous distributed system  

in the presence of a single crash failure.” 

Fischer, Lynch und Paterson [FLP85]: 

Key problem:  

Distinguish slow from dead! 
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Consensus Solvability in ParSync [DDS87] (I) 

•Processors synchronous / asynchronous 

•Communication synchronous / asynchronous 

•Message order synchronous (system-wide consistent) 

/ asynchronous (out-of-order) 

•Send steps broadcast / unicast 

•Computing steps atomic rec+send / separate rec, send 
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Dolev, Dwork and Stockmeyer investigated consensus 

solvability in Partially Synchronous Systems (ParSync), 

varying 5 Ăsynchrony handlesñ : 
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Consensus Solvability in ParSync [DDS87] (II) 

ucast bcast 

s+r 

s/r 
Consensus impossible 

Wait-free consensus possible 

Consensus possible  

for f=1 



The Role of Synchrony Conditions 

Enforce event ordering  

•Distinguish „old“ from „new“ 

•Ruling out existence of stale 

(in-transit) information 

•Creating non-overlapping 

„phases of operation“ (rounds) 

 

Enable failure detection 

•Distinguish slow from dead 
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Failure Detectors 
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Failure Detectors [CT96]  (I) 

•Chandra & Toueg augmented purley asynchronous systems with 

(unreliable) failure detectors (FDs): 

 

 

 

 

•Every processor owns a local FD module (an Ăoracleñ – we do 

not a priori care about how it is implemented!) 

• In every step [of a purely asynchronous algorithm], the  FD can be 

queried for a hint about failures of other procs  
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Proc p Proc q Network 

Valve 

Pressure 

Sensor 



Failure Detectors [CT96]  (II) 

•        make mistakes – the (time-free!) FD specification 

restricts the allowed mistakes of a FD 

•FD hierarchy: A stronger FD specification implies 

–less allowed mistakes 

–more difficult problems to be solved using this FD 

–But: FD implementation more demanding/difficult 

•Every problem Pr has a weakest FD W: 

–There is a purely asynchronous algorithm for solving Pr that 

uses W 

–Every FD that also allows to solve Pr can be transformed (via a 

purely asynchronous algorithm) to simulate W 
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Example Failure Detectors (I) 

•Perfect failure detector P: Outputs suspect list 

–Strong completeness: Eventually, every process that crashes is 

permanently suspected by every correct process 

–Strong accuracy: No process is ever suspected before it crashes 

 

•Eventually perfect failure detector ◊P: 

–Strong completeness  

–Eventual strong accuracy: There is a time after which correct 

processes are never suspected by correct processes 
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Example Failure Detectors (II) 

•Eventually strong failure detector ◊S: 

–Strong completeness  

–Eventual weak accuracy: There is a time after which some 

correct process is never suspected by correct processes 
 

•Leader oracle Ω: Outputs a single process ID 

–There is a time after which every not yet crashed process 

outputs the same correct process p (the „leader“) 
 

•Both are weakest failure detectors for consensus (with 

majority of correct processes) 
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Consensus with ◊S: Rotating Coordinator 
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Why Agreement? Intersecting Quorums 

n=7 

p decides v every q changes its estimate to v 

f=3 

 

v v v v ┴ ┴ ┴ 

U. Schmid 

Intersecting Quorums: 



Implementability of FDs 

•If we can implement a FD like Ω or ◊S, we can also 

implement consensus (for n > 2f ) 

•In a purely asynchronous system 

–it is impossible to solve consensus (FLP result) 

–it is hence also impossible to implement Ω or ◊S 

•Back at key question: What needs to be added to an 

asynchronous system to make Ω or ◊S implementable? 

–Real-time constraints [ADFT04, …]  

–Order constraints [MMR03, …] 

–??? 
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Food for Thoughts 

(1) Starting out from the rotating coordinator consensus 

algorithm with ◊S shown above, devise a consensus 

algorithm that uses Ω instead of ◊S. (Use Ω in the first 

phase to receive only from the process that is 

considered leader, and keep in mind that different 

receivers may have different leaders for some time. 

You thus need some additional effort to make their 

estimates the same if somebody decides early.) 

(2) Sketch the proof that  your algorithm works correctly 

in a system of n > 2f  processes, where up to f may 

crash. 
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Real-Time Clocks 
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Distributed Systems with RT Clocks 

•Equip every processor p with a local RT clock Cp(t) 

 

 

 

 
 

•Small clock drift ρ  local clocks progress 

approximately as real-time, with clock rate Í [1-ρ,1+ ρ] 

•End-to-end delay bounds [τ-, τ+], a priori known 
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The Role of Real-Time 

•Real-time clocks enable both: 

 

 

 

 

 

 

•[Show later: Real-time clocks are not the only way …] 
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Event ordering 

Failure detection 



Failure Detection: Timeout using RT Clock 
 

status = do_roundtrip(q) 

{ send ping to q  

 TO := Cp(t) + 5 seconds   

 wait until Cp(t) = TO  

 if  pong did not arrive then  

  return  DEAD 

     else 

  return  ALIVE  

} 
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p +1 +2 +3 +4 +5 

q 

5 seconds 

ping 

t 

   set timer 

TO before pong: 

DEAD 

Å the end-to-end delays are at most Ű+  = 2.5 seconds 

ÅŰ+ is known a priori [at coding time] 

process ping 

pong 

process pong 

TO after pong: 

ALIVE 

p can reliably detect whether q has been alive recently, if 
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Event Ordering: Via Clock Synchronization 

Internal CS:  

• Precision |Cp(t) -  Cq(t)| ≤ π 

• Progress like RT (small drift ρ) 

• CS-Alg must periodically 

resynchronize 

 T 

t 

Cp(t) 

Cq(t) 
≤ π 

External CS:  

• Accuracy |Cp(t) ï t | ≤ α  

• CS-Alg needs access to RT  

• External CS  internal CS π = 2α  

 

 
T 

t 

T = t 

t - α 

t + α 

≥ Cp(t) ≥ 

α 

α 
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Exchange phase 

Internal CS: Generate Periodic Resync Event 

 Via sync. clocks  

+ no message 

overhead 

− requires initial 

synchrony 

 

 Via message 

exchange [ST87] 

− message overhead 

+ no initial 

synchrony required 

p 
Cp(t1) = P Cp(t2) = 2P Cp(t3) = 3P 

q 

Cq(t1’) = P Cq(t2’) = 2P Cq(t3’) = 3P 

≤ π 

p 

Cp(tk) = kP 

q 

Cq(tk’) = kP 

Trigger phase 
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Internal CS: Estimate Remote Clocks 

 One-way:  

+ 1 message only 

− Must know d and ε 
(and thus dmax = d + ε) 

 

 

  Round-trip: 

− 2 messages & larger error, 

BUT 

+ Round-trip time U can be 

measured locally → need to 

know d only [compute ε] 

+ U ≈ 2d → ε ≈ 0  

“Probabilistic CS” [Cri89] 

 

p 

q 
tq 

Estimate [at q]:            

Cp(tq) = kP+d+ε/2 

|Error| ≤ ε/2 

d ε 

Time ? 
Tq 

Cp(tk) = kP 

Estimate [at p]:       

Cq(tp) = kP+2d+ε 

|Error| ≤ ε 

 
tq 

p 

q 

Cp(tk) = kP  2d 2ε 

 U 

tp 

kP 

Cp(tq) 

Cq(tp) 
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Internal CS: FT Midpoint Algo [LWL88] 

p 

Cp 

q 

Cq 

Cp 

Cq 

π Before resync … 

π ≤́ π/2 After resync … 

 A priori bounded [Ű-, Ű+] allows to estimate all remote clocks 

 Discard f largest and f smallest clock readings (could be faulty) 

 Set local clock to midpoint of remaining interval 
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Internal CS in Biological Systems 

•Malaccae Fireflies 

–Male fireflies emit light pulses ~ once 
per second 

–Swarm of fireflies eventually flash in 
synchrony 

 

•Cardiac ganglion of lobster heart 

–Heart activation by synchronized 
firing of 4 interneurons 

–Ganglion controls activation 
frequency within some bounds, 
without losing synchrony 

–Evolution-optimized strategy: Fault-
tolerance, self-stabilization, etc. 
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SS+FT Pulse Generation Alg. [DDP03]  

•Pulse-coupled oscillators (“integrate-and-fire”) 

–Time-decaying refractory function ~ own node’s sense of time 

–Time-decaying threshold level ~ perception of pulses from peers 

–Pulse is generated [+ refractory function reset] when refractory function 

hits threshold level 

t 

Peers synced Peers not synced 

endogenous cycle 
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SS+FT Clock Sync Algorithm  [DDP03b] 

•Allows to build linear-time self-stabilizing, 

Byzantine fault-tolerant clock sync algorithm, by 

–using synchronized pulses as a pacemaker 

–employing a self-stabilizing Byzantine agreement 

algorithm acting on clock values 

 

•Also solves initial clock synchronization problem 
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External CS: Global Positioning System (GPS) 

•4 satellites required to determine χ = (x, y, z) and Δ 

•1 satellite sufficient for Δ if χ is already known 

 Satellite clocks 
synchronized to 
USNO atomic 
master clock 

 GPS-Receiver 
solves system of 
equations 

    ti+|χ- si|/c+Δ = Ti 

Rec. time: t1,  t2 (unknown) 

Local rec. time: T1, T2 

(known) 

Time: t1  (known) 

3D-pos: s1 (known) 
 

Time: t2 (known) 

3D-pos: s2 (known) 

Clk.offset Δ = T ï t (unknown) 

3D-pos: χ (unknown) 
GPS  
Rec. 

GPS satellites 
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Why are Synchronized Clocks Useful? 

p 

Cp(t1) = R Cp(t2) = 2R Cp(t3) = 3R 

q 
Cq(t1’) = R Cq(t2’) = 2R Cq(t3’) = 3R 

≤ π 

•Synchronized clocks allow to simulate communication-

closed lock-step rounds via clock time [NT93]: 

 

 

 

 

•Only requirement: R Ó Ű+ +  ́holds! 

•Lock-step rounds         perfect failure detection at end of 

rounds 

t ≤ Ű+   



Perfect FD       Lock-Step Round Simulation 

•Attempt round simulation at p: Waiting for either 

–arrival of round message from q, or 

–p‘s instance of P suspects q 

 

 

 

 

 

•Problem faced by q:  

–msgk not received in round k, although p alive after round k 

–q even receives msgk+1 in round k+1 in this example 
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p 

q 

t 

q suspects p 

P crashes 

msgk msgk+1  

round k round k+1 
[or q suspects p next] 

q trusts p  
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Using RT Clocks: Deficiencies 

•Algorithms like do_roundtrip(.) have system-dependent 

time values (unit „seconds“) in their code / variables   

not easily portable to e.g. faster hardware 

•Fail-operational systems might tolerate occasional loss 

of timeliness properties – but never of safety properties 

•Unfortunately:  

Safety properties like agreement typically rely on the reliable 

operation of do_roundtrip(.) and similar primitives 

End-to-end delay bounds τ+ that always hold are difficult to 

determine in real systems 

Try to relax timing assumptions in ParSync models … 



Food for Thoughts 

(1) Consider the fault-tolerant midpoint algorithm for 

computing the clock corrections u=FTM(U) resp. 

v=FTM(V) for the given vectors U=(u1,…,un)  resp. 

V =(v1,…,vn) of n  3f + 1 clock readings (ordered 

by process ids). Assume that at least n - f  of the 

pairs (ui, vi) satisfy  

– |ui – vi|  ʀ 

– |ui – uj|  ʌ 

– |vi – vj|  ʌ 

Prove that |u – v|  ʌ/2  + 2ʀ. 
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Partially Synchronous Models 
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Recall: Synchronous Model 

•„The“ classic model 

–Transmission delay bound τ+ 

–Computing step time bound μ+ 

–Bounded-drift local clocks available 

•Allows (Byzantine-tolerant) implementation of  

–Internal clock synchronization  

–Lock-step rounds 

–etc. 
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The Timed Asynchronous Model 

•Cristian & Fetzer [CF99]: 

–Alternating bad and good periods: 

•Transmission delay bound τ+ 

•Computing step time bound μ+ 

–Reliable bounded-drift local RT clocks available 

–Local clocks allow to detect good/bad periods  TA algorithms 

are always safe and live in good periods 

•TA algorithms allow to implement (non-Byzantine) fail-

aware services, including eventual lock-step rounds 
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Classic Partially Synchronous Models (I) 

•„The“ classic ParSync models                                     

Dolev, Dwork & Stockmeyer [DDS87]                                   

Dwork, Lynch & Stockmeyer [DLS88]               

Attiya, Dwork, Lynch & Stockmeyer [ADLS94]  

•Semi-synchronous model by Ponzio & Strong [PS92] 

•Common system parameters: 

–Bounded processor speed ratio Φ = μ+/μ- 

–Transmission delay bound Δ 

•Archimedean model by Vitanyi [Vit84] 

–Bounded speed ratio S = τ+/μ- 
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Classic Partially Synchronous Models (II) 

Processes can locally time-out messages: 
 

–The classic ParSync models [DDS87, DLS88] and 

[ADLS94] assume 

•Δ given in multiples of (unknown) minimal computing step 

time μ- [hence τ+ = Δ·μ- real-time seconds] 

•spin loop counting f(Φ,Δ) steps allows to time-out messages 

[implements local clock with real-time rate Í [1/Φ,1]] 

–Archimedean model [Vit84] also allows to time-out 

messages via spin-loop for S steps 

–Semi-synchonous model [PS92] assumes  

•Δ = τ+ given in real-time seconds  

•bounded-drift local RT clocks available for timing-out 

messages 
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Classic Partially Synchronous Models (III) 

    Variants of ParSync models: System parameters (Δ, Φ)  

1. known and hold                                                                          

from the beginning 

       

2. known and hold from unknown global stabilization time (GST) on 

 

 
3. unknown and hold from the beginning / from GST on:           

Learn (Δ, Φ), by continuously increasing estimate values 
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Time-Free Message-Timeout in ParSync ? 

•Implementation of do_roundtrip(p) in the ParSync models 
of [DLS88] or [Vit85]: 

  

 

 

 

 

 

•But: No obvious correlation between processor step 
times and message delays  not really time-free … 

{  send ping to p  
    for i=1 to x do no-op  /* x=f(ǃ, ǔ) resp. x=f(s) is  
          dimensionless! */  
    if pong did not arrive then  
     return DEAD 
    else 
     return ALIVE  
}  



The Θ/ABC-Model 

In classic ParSync models: 

•Timing assumptions are primarily used for ordering 

events 

•Is it possible to define a time-free ParSync model based 

on event ordering in the first place?  

 

For example: Assume that 

•only less than Θ roundtrips can occur during any single 

round-trip 

•Actual duration (D) irrelevant 
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status = do_roundtrip(q) 

{ send ping to q  

 for  i=1 to Ū do       

begin 

        send delay_ping(i) to r 

        wait for delay_pong(i) from r 

     end 

 if  pong did not arrive then  

  return  DEAD 

     else 

  return  ALIVE  

} 

 

D 

p 

r 

1 2 3 4 5 

Ū = 5 

q ping pong 
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The Θ-Model: Bounded E-t-E Delay Ratio 

•End-to-end delays of all 

messages in transit at t 

–minimum τ−(t)  

–maximum τ+(t) 

• τ+(t) and τ−(t) may vary 

arbitrarily with time, but:  

•Ratio τ+(t)/τ−(t)  bounded by 

[known or even unknown] 

system parameter Θ 

 

Widder & Schmid [WS09] 
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Byzantine FT Clock Sync in the Θ-Model  

For n ≥ 3f + 1 with up to f  Byz. failures: 

• Suppose p sends tick(C+1) at time t 

• Then, q also sends tick(C+1) by time   
t + 2τ+ - τ− 

+ Fastest tick-frequency of any p: 1/τ− 

Ý Clock ticks occur approximately 
synchronously, with precision π(Θ) 

 On init  
         send tick(0) to all; C := 0;  

 If  got tick(l)  from f +1 nodes and l > C       

         send tick(C+1),…, tick(l) to all;  

             C := l;  

 If  got tick(C) from 2f +1 nodes        

         send tick(C+1) to all;  

             C := C+1; 

f + 1 

 2f + 1 

p at t any q’ at t+Ű+- Űī  any q at t+2Ű+- Űī  

≤ Ű+- Űī  ≤ Ű+ 
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Correlation  Coverage Expansion 

•Given some bound τ+ and τ− assumed during system design 
(as used in synchronous systems), compute Θ = τ+ / τ−  

•Unanticipated overload: τ+(t) > τ+ 

t 

end-to-

end 

delays 

t- 

ŭ 

t+ 

Synchronous system out of spec 

—  if τ+(t) ≤ Θτ−(t), however, 

 

       Θ-system still OK 

            

            

 

 

Note:  

• τ+(t) = τ+ + α(t)  

• τ −(t) = τ- + α(t)/Θ 

sufficient for Θ to hold! 
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Shortcomings Θ-Model  

•Correlation between slow and fast messages need not 

exist for all messages 

–Some very fast messages [even τ− = 0] may be in transit 

somewhere in the system during a slow message 

–Correlation and hence coverage expansion does not exist in 

such cases 

•Need a more relaxed definition of the relation between 

slow and fast messages  

–All that is actually needed is to constrain the number of fast 

messages during a slow one 

–No need for a correlation of unrelated messages, and at every 

point in time t 
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The Asynchronous Bounded Cycle Model 

 

 

 Example: Ū = 4.5 

 2 consecutive Ăslowñ 
messages  

 Cycle with 9 enclosed 
Ăfastñ messages 

 No larger cycles allowed 

 

 

 

 

 

 

Robinson & Schmid [RS08] 

ÅThe ABC Model just bounds the ratio of the number of 

forward and backward-oriented messages in cycles 

 

 

 

 

 
 

ÅNo implicit or explicit reference to real-time 

 Messages with τ−(t) = 0 allowed 

 No need to relate independent messages in the system 

 We proved: Any Ū-algorithm works correctly in the ABC model 
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FLP 

Ūu 

Ū 

DLSu 

Partial Order of ParSync Models 

•DLS … [DLS88] with   

known Δ, Φ 

•Θ … ABC/Θ-Model 

with known Θ 

•DLSu … [DLS88] with 

unknown Δ, Φ  

•Θu … ABC/Θ-Model 

with unknown Θ 

•FLP … asynchronous 

FLP-Model 

 

DLS 



Even Weaker ParSync Models? 

•All the ParSync Models seen so far allow to build 

–lock-step rounds, or at least 

–eventual lock-step rounds 

•Solving consensus is easy here. 

•We know that lock-step rounds are stronger than failure 

detectors that are sufficient for solving consensus: 

–Perfect failure detector P 

–Leader oracle Ω 

•Are there weaker ParSync models where only such FDs 

can be implemented? 
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Weaker Partially Synchronous Models 



Finite Average Roundtrip-Time Model  (I) 

Fetzer, Schmid and Süsskraut [FSS04] 

–Asynchronous system with crash failures 

–Unknown lower bound μ- for computing step time 

–Unknown average round-trip time bounds 

 

 

 

 

 

–RTT(k) and hence τ+ unbounded, yet 

–Average after n „Epochs“ is 
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Finite Average Roundtrip-Time Model  (II) 

•The FAR model assumptions  

–do not allow to implement lock-step rounds 

–do allow to implement the eventually perfect FD P 

–can solve consensus if n > 2f  

• Key ideas for P implementation: 

–Implement weak local clock [via spin-loop] for timing-out 

messages 

–Time-out roundtrips using adaptive timeout value TV 

•If fast RT occurs [before TO]: Increase TV, to prepare for future slow 

RTs 

•If slow RT occurs [after TO]: (Could) decrease TV, since fast RTs 

must eventually follow due to finite average RTT 
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Weak Timely Link Models (I) 

•Partially synchronous processors (Φ) with crash failures 

•Almost all communication asynchronous, except: 

•At least one process p must be an ◊f-source: 

–After some (unknown) time, p has timely links to at least f  neighbors                        
[No message sent at time t is  processed after t+τ+ (unknown)] 

–Note: A link to a crashed process is timely per definition! 

•Allows to implement Ω, and hence solving consensus for n > 2f  

•An ◊f-1-source is provably not sufficient 

•Currently weakest WTL model [HMSZ09]: A moving ◊f-
source, where the f  timely links can change with time 

 

Aguilera, Delporte, Fauconnier, Toueg [ADFT04], 
Hutle, Malkhi, Schmid, Zhou [HMSZ09]: 
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Weak Timely Link Models (II) 

•periodically broadcasts heartbeat 
message (HB) 

• times-out HBs of all neighbors 

–using weak local clock [implemented via 
step counting in spin-loop] 

– timeout value increased on every TO    
[= no HB received before expiration] 

•broadcasts accusation message 
acmsg(q) on every TO for q’s HB 

• if n-f  acmsg(q)  are received, then 
increment acc_count[q] 

•Ω-output: q with min. acc_count[q] 

Ý implementation:  Every process 

r 

ö5-source  

p 

q 

s 

t 

u 

 

 All processes accuse crashed r  
acc_count[r] continuously grows 

 5+1 processes never accuse p  
incrementing acc_count[p] stops 



Even Weaker Models (I) 

•Investigate models for weaker problems than 

consensus 

•Candidate of choice: k-set agreement [Cha93]: 

–Input values from finite domain V with |V| > k 

–Processes must decide on at most k different output values 

system-wide 

•Well-known properties: 

–Weakening of consensus (= 1-set agreement) 

–Requires |f/k˩ + 1 rounds in synchronous systems with up to 

f crashes 

–Impossible in asynchronous systems if f  ≥ k crashes 
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Even Weaker Models (II) 

 

•k-set agreement allows to further explore the 

synchronous/asynchronous solvability border 

•There are models where  

–k-1-set agreement (hence consensus) is impossible 

–k-set agreement is possible 

•Two major directions of research: 

–Failure detectors 

–ParSync models 

 

182.703 PRDC 55 U. Schmid 



U. Schmid 182.703 PRDC 67 

Dynamic Networks 



Dynamic Distributed Systems (DDS) 

•Characteristics of DDS 

–Unknown/time-varying number of participants 

–Time-varying communication topology 

–Participants have local knowledge only 

•Applications 

–Wireless ad-hoc networks, sensor networks 

–Biological systems 

–Social systems 

•Many flavors: 

–Lock-step synchronous systems 

–Asynchronous systems 
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Synchronous Systems with Time-Varying 

Communication Graphs 
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p3 

p2 

p1 

p4 p3 

p2 

p1 

p4 

p5 

p3 

p2 

p1 

p4 

p5 

Joining/leaving nodes 

Appearing/disappearing 

links 

Network 

partitioning 

t 



Study Agreement Problems 

•Consensus 

• Processes have local input value and local decision value (initially 

undefined) 

• Agreement: Processes must decide on a single common output value 

system-wide, within some finite termination time 

•Weaker problem: k-Set agreement 

–k-Agreement: Processes must decide on at most k different output values 

system-wide 

–Relaxation of consensus agreement property 

•Weaker problem: Approximate agreement 

–Processes must decide on values that are within ε of each other 

–Relaxation of consensus agreement property 
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Possible Applications 

•Approximate agreement: 

Clock synchronization 

•Gracefully degrading k-set 

agreement: Transmission 

schedule negotiation 
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p1 

p5 

p6 

k = 2 
p2 

p4 p3 

p5 



Our General Approach 
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if  (..)  

    somethinguseful 

else 

    somethingsmoreuseful 

Network assumption 

Impossibility Algorithm 



Network Assumptions 

•Adversarial model:  

–Adversary chooses communication graph sequence 

–Restricted by network assumptions 

•Strong network assumption (e.g. always strongly 

connected) 

+ Solution algorithms simple 

–Assumption coverage in real systems small 

•Weak network assumption 

–Complex, expensive algorithms (if existing at all) 

+ Assumption coverage in real systems large 
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Model restrictions 

Algorithmic complexity 

[BRS11] (k-set agreement) [BRSWS18] 

Impossibility/solvabiltiy border 
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