182.703: Problems in Distributed Computing
(Part 1)
WS 2021

Ulrich Schmid
Institute of Computer Engineering, TU Vienna
Embedded Computing Systems Group E191-2
s@ecs.tuwien.ac.at

http://ti.tuwien.ac.at/ecs/teaching/courses/prdc
Target: Fault-tolerant Distributed RT Systems

Spatially distributed reactive computations

Real-time requirements

Partial failures

Pressure Sensor

Proc p

Network

Proc q

Valve

Worst-case response time $RT \leq T_{\text{max}}$

close valve
Interdisciplinary Research

REAL-TIME SYSTEMS

FAULT-TOLERANT DISTRIBUTED ALGORITHMS

DIGITAL INTEGRATED CIRCUITS

U. Schmid

182.703 PRDC
Motivation: Distributed Fault-Tolerant Clock Generation in Systems-on-Chip
Clocking in Systems-on-Chip (I)

Classic synchronous paradigm

- **Concept:** Common notion of time for entire chip
- **Method:** Single crystal oscillator
 Global, phase-accurate clock tree

Disadvantages

- Cumbersome clock tree design (physical limits!)
- High power consumption
- Clock is *single point of failure!*
Clocking in Systems-on-Chip (II)

Alternative: DARTS clocks

- **Concept:** Multiple synchronized tick generators
- **Method:** Distributed FT tick generation algorithm
 Implemented in (asynchronous) HW

http://ti.tuwien.ac.at/ecs/research/projects/darts

Advantages

- Reasonable synchrony
- Uncritical clock distribution
- Clock is no single point of failure!
The DARTS Distributed Algorithm

On init
→ send \(\text{tick}(0) \) to all; \(C := 0 \);

If got \(\text{tick}(l) \) from \(f + 1 \) nodes and \(l > C \)
→ send \(\text{tick}(C+1), \ldots, \text{tick}(l) \) to all;
 \(C := l \);

If got \(\text{tick}(C) \) from \(2f + 1 \) nodes
→ send \(\text{tick}(C+1) \) to all;
 \(C := C+1 \);

For \(n \geq 3f + 1 \) and up to \(f \) node failures, with (small) e-t-e delays \(\epsilon \in [d, d + \epsilon] \):

• Suppose node \(p \) sends \(\text{tick}(C+1) \) at time \(t \)

• Then, node \(q \) also sends \(\text{tick}(C+1) \) by time \(t + d + 2 \epsilon \)

\(\Rightarrow \) Clock ticks occur approximately at the same time

\(\leq \epsilon \)

\(\leq d_{\text{max}} = d + \epsilon \)

\(p \) at \(t \)
\(\text{any } q' \) at \(t + \epsilon \)
\(\text{any } q \) at \(t + d + 2 \epsilon \)
$n \geq 3f+1$: Why do Failures hurt so much?

Toy example:

- With this algorithm, B and C never get closer together
- Will prove: Majority $n = 2f + 1$ not enough for f Byz. failures!
Pipe Compare Signal Generators (PCSGs): There exists a dedicated detection circuit for each pair of pipes which generates the status signals \(GEQ_{q,p}^o(t) \) and \(GR_{q,p}^o(t) \). In particular, \(GEQ_{q,p}^o(t') \) becomes active (i.e.,

\[
GEQ_{q,p}^o(t) \text{ and } GR_{q,p}^o(t) \text{ are directly causally related, denoted by } I(t') \rightarrow O(t), \text{ if}
\]

(i) \(r_{p,q} \equiv 1 \),
(ii) \(|r_{p,q}'| = 1 \),
(iii) \(r_{p,q}^{self}(t) \in \mathbb{N}_{odd} \),

Definition 4.1. (Direct Causality). Let \(I(t') \) and \(O(t) \) be two events of some specific signal input and output, respectively, of a correct component \(C \). Then \(I(t') \) and \(O(t) \) are directly causally related, denoted by \(I(t') \rightarrow O(t) \), if

\[
\begin{align*}
\text{(i)} & \quad r_{p,q} \equiv 1, \\
\text{(ii)} & \quad |r_{p,q}'| = 1, \\
\text{(iii)} & \quad r_{p,q}^{self}(t) \in \mathbb{N}_{odd}
\end{align*}
\]

Theorem 4.13. (Precision). The precision \(\pi \geq |b_q(t) - b_p(t)| \) of our algorithm is bounded by
\[
\pi \leq \left\lfloor \frac{T_{first}}{T_{first}} \right\rfloor + 1.
\]

Proof. First of all, it has been established for all \(k + 1 \), i.e., \(r_k \equiv 1 \), \(b_{max}(t) \leq \left\lfloor \frac{\Delta}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}} \).

Theorem 4.14. (Accuracy). Given \(\Delta = t_2 - t_1 \), the accuracy \(|b_p(t_2) - b_p(t_1)| \) of any correct process \(p \) is bounded by
\[
|b_p(t_2) - b_p(t_1)| \leq \left\lfloor \frac{n - t_1}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}} \leq \left\lfloor \frac{n - t_1}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}}.
\]

Proof. The upper bound for accuracy will be shown first: It is known that \(\forall t : b_p(t) \geq b_{max}(t) - \alpha + (1 - I_{sync}(t)) \) and \(\forall t : b_p(t) \leq b_{max}(t) \) from Lemma 4.13 and Lemma 4.11. Thus \(b_p(t_2) - b_p(t_1) \leq b_{max}(t_2) - b_{max}(t_1) + \pi - (1 - I_{sync}(t_1)) \). By applying Lemma 4.11, \(b_p(t_2) - b_p(t_1) \leq \left\lfloor \frac{n - t_1}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}} \leq \left\lfloor \frac{n - t_1}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}}. \)

Moreover, from Lemma 4.7 it follows that \(b_p(t_2) - b_p(t_1) \leq \left\lfloor \frac{n - t_1}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}}. \) Hence, \(b_p(t_2) - b_p(t_1) \leq \min \left\{ \left\lfloor \frac{n - t_1}{T_{first}} \right\rfloor + \frac{\pi + 1}{T_{first}} \right\rfloor \right\rfloor + \frac{\pi + 1}{T_{first}}. \)

To prove the lower bound, first define \(b_1 = b_p(t_1), b_2 = b_p(t_2) \) and \(t_{b_1} \leq t_2, t_{b_2} \leq t_2 \) as the points in time when \(p \) sends tick \(b_1 \) and \(b_2 \). Clearly \(t_{b_2+1} > t_2, \)

U. Schmid

182.703 PRDC
DARTS Implementation
DARTS Extension: Self-Stabilization

SS Pulse Synchronization
Self-stabilizing, but moderate skew, low frequency

Tick Synchronization (DARTS)
Nominally low skew, high freq., but not self-stabilizing

force node reset
Introduction to Distributed Algorithms
Content (Part 1)

- **Basics:**
 - Distributed Computing Model
 - Synchrony and Fault-Tolerance
 - Correctness Proofs

- **Some Appetizers:**
 - Consistent Broadcasting
 - Consensus

- **Food for Thoughts**
Classic Modeling and Analysis

- Processors/processes modeled as interacting state machines
- **Zero-time** atomic computing steps, usually time-triggered
 - Message Passing (MP): [receive] + compute + [send]
 - Shared Memory (SHM): [accessSHM] + compute

- System timing parameters:
 - Operation durations modeled via **inter-step times** \(\epsilon[\mu^-, \mu^+] \) (often \(\mu^- = 0 \))
 - Message delays modeled as **end-to-end delays** \(\epsilon[\tau, \tau^+] \) (often \(\tau = 0 \))
Synchrony Models: 2 Extremes …

Lock-step synchronous systems

- Computing step times:
 \(\mu^- = \mu^+ = R \)
- Message delays
 \(0 \leq \tau \leq \tau^+ \leq R \)
- Perfectly synchronized rounds

Asynchronous systems

- Computing step times:
 \(\mu^- = 0 \)
 \(\mu^+ \) finite (but unbounded)
- Message delays
 \(\tau = 0 \)
 \(\tau^+ \) finite (but unbounded)
Failure Models

• „Deterministic“ failure models
 – At most f of n processors in the system may fail
 – Correct processes do not a priori know who has failed and when and how
• Failure semantics ranging from
 – Crash failures: Processors stop operating, possibly within a step
 – Byzantine failures [LSP82]: Processors can do what they want
• Real processors etc. fail probabilistically \rightarrow Coverage analysis
• Restrict our attention to message passing systems here:
 – Typically fully connected, with dedicated links between every pair of processors
 – Receiver cannot be spoofed w.r.t. sender of a message
 – [Communication between correct processes typically considered reliable]
Message Passing vs. Shared Memory (I)

- **MP can always be simulated in a SHM system**
- The opposite is not generally true:
 - Linerarizable AsyncSHM can be simulated in AsyncMP only when a majority of processes do not crash \((n > 2f)\)
- **MP is more elementary than SHM**
- **SHM is more powerful than MP**

Impossibility proof for \(n \leq 2f\):
\[
p \in S_0, |S_0| = n/2, \ q \in S_1, |S_1| = n/2
\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
Message Passing vs. Shared Memory (II)

- **Wait-free \((f = n-1)\) event ordering** in AsyncSHM:
 - \(p\) knows (already by \(t_p\)) whether \(q\) has done some step!
 - \(p\) and \(q\) can **agree** on order of having done some step if no “in-between” crash occurs!

- **Impossible in AsyncMP!**

- **Uses „write-before-read“:**
 - \(p\) sets \(O[p]:=1\) if \(q\) has set \(R[q]:=1\)
 - Both \(O[p]:=0\) and \(O[q]:=0\) impossible
 - Event order \(p\) before \(q\) if \(O[p]=0 \land O[q]=1\) or \(O[p]=1 \land O[q]=1\)
 - Event order \(q\) before \(p\) if \(O[q]=0 \land O[p]=1\)
 - Event order **undecided** (forever) if either \(p\) or \(q\) crashes in between its two Writes

U. Schmid
Correctness Proofs

• Global state transitions
 - Configuration $C = \text{vector of processor local states } [+ \text{ in-transit messages for MP}]$
 - State transition = result of a single processor taking a step

• Algorithm vs. Adversary
 - Adversary determines which and when events ϕ (like processor p_i takes a step) happen (\rightarrow Async. systems: Adv. subject to admissibility (fairness) conditions)
 - Algorithm determines what actually happens in the corresponding step

• Executions and traces
 - Execution $E = \text{sequence of configurations alternating with events } C_0, \phi_1, C_1, \phi_2, C_2, \phi_3, C_3, \ldots$
 - Trace $T = (\text{sub-})\text{sequence of } \text{„interesting“ events (or states)}$

• Correctness proofs: Set of generated traces satisfies
 - Safety properties („something bad never happens“)
 - Liveness properties („something good eventually happens“)
Some Appetizers
Consistent Broadcasting
Consistent Broadcasting [ST87]

• Want to build authenticated reliable broadcasting:
 – Any process \(p_s \) may have some message \(m_s \) to broadcast: \(\text{bcast}(p_s, m_s) \)
 – Every correct process shall eventually call \(\text{accept}(p_s, m_s) \), and shall be sure that the received \(m_s \) originates in \(p_s \)
 – Do not use real authentication (cryptography)!

• Very useful primitive:
 – Clock synchronization
 – Consensus
 – etc.
Properties Consistent Broadcasting

Time-free specification:

- **Correctness:** If a correct processor \(p_s\) executes \(\text{bcast}(p_s, m_s)\), then every correct processor eventually calls \(\text{accept}(p_s, m_s)\).
- **Unforgeability:** If a correct processor \(p_s\) never executes \(\text{bcast}(p_s, m_s)\), then no correct processor ever calls \(\text{accept}(p_s, m_s)\).
- **Relay:** If some correct processor calls \(\text{accept}(p_s, m_s)\), then every other correct processor eventually also calls \(\text{accept}(p_s, m_s)\).
Implementation

\textbf{bcast}(p_s,m_s) \text{ at } p_s

\begin{align*}
&\text{send } (\text{init},p_s,m_s) \text{ to all processors} \\
\end{align*}

\textbf{accept}(p_s,m_s) \text{ at every } p_i

\begin{align*}
&\text{if got } (\text{init},p_s,m_s) \text{ from } p_s \\
&\quad \rightarrow \text{send } (\text{echo},p_s,m_s) \text{ to all [once]} \\
&\text{if got } (\text{echo},p_s,m_s) \text{ from } f + 1 \\
&\quad \rightarrow \text{send } (\text{echo},p_s,m_s) \text{ to all [once]} \\
&\text{if got } (\text{echo},p_s,m_s) \text{ from } 2f + 1 \\
&\quad \rightarrow \text{call accept}(p_s,m_s)
\end{align*}

\textbf{System model:}

- At most f Byzantine faulty processors
- $n \geq 3f + 1$
- E-t-e delays $\in [d,d+\varepsilon]$

- Message sent by correct proc at t got by correct receiver proc within $[t+d,t+d+\varepsilon]$
- Every proc gets at most f faulty echo messages from different procs
- At most f echo messages available at p_i by t could be missing at p_j by $t + \varepsilon$
Correctness Proof (Time-dependent Version)

- **Correctness:** If a correct proc p_s executes $\text{bcast}(p_s, m_s)$ by t, then every correct processor eventually calls $\text{accept}(p_s, m_s)$ by $t+2(d+\varepsilon)$

- **Unforgeability:** If a correct proc p_s does not execute $\text{bcast}(p_s, m_s)$ by t, then no correct processor calls $\text{accept}(p_s, m_s)$ by $t+2d$

- **Relay:** If a correct processor calls $\text{accept}(p_s, m_s)$ at t, then every other correct processor also calls $\text{accept}(p_s, m_s)$ by $t+d+2\varepsilon$

Relay:

- p_i at t
- Any p_j' at $t+\varepsilon$
- Any p_j at $t+d+2\varepsilon$
A Note on Formal Verification

Problem: Correctness proofs for FT distributed algorithms (at most f out of n processes Byzantine faulty)

- State-of-the-art: Case-by-case “paper-and-pen” proofs, typically lacking rigorousness

- **Exciting alternative approach:** Apply finite-state parameterized **model checking**, based on advanced abstractions

First results:

- Rigorous foundation: Interval and counter abstractions for threshold bounds: [JKSVW13b]

- Fast model-checking of Byzantine fault-tolerant atomic broadcast algorithms: [JKSVW13]
Consensus
A Classic Problem: Distributed Agreement (Consensus)

Yes

Yes

Yes

Yes

No

No

No

Yes

None meet

All meet

U. Schmid
Consensus Properties

- Every process p_i
 - has initial value x_i chosen from some finite set V
 - shall irrevocably decide on output value y_i

- **Termination:** Every correct processor eventually decides

- **Agreement:** Every two correct processors p_i, p_j decide on the same value $y_i = y_j$

- **Validity:** If all correct processors have the same input value x, then x is the only possible decision value
Asynchronous Consensus Impossibility

Fischer, Lynch and Paterson [FLP85]:

“There is no deterministic algorithm for solving consensus in an asynchronous distributed system in the presence of a single crash failure.”

Key problem: Distinguish slow from dead!
Distributed Agreement (Consensus) - FLP
Synchronous Consensus

Lamport, Shostak and Pease [LSP82]:

“There is a deterministic algorithm for solving consensus in a synchronous distributed system of $n \geq 3f+1$ processors in the presence of at most f Byzantine failures.”

But:

It is impossible to solve consensus if $n = 3f$.!
Impossibility of Consensus for $f = 1$, $n = 3$

- Suppose correct algorithm $\mathcal{A} = (A,B,C)$ for (p_0,p_1,p_2) existed

- Assume p_0 faulty

- By Validity:
 - $x_1 = x_2 = 0 \rightarrow y_1 = y_2 = 0$
 - $x_1 = x_2 = 1 \rightarrow y_1 = y_2 = 1$

- By Agreement:
 - $x_1 \neq x_2 \rightarrow y_1 = y_2$
Arrange 6 correct processors in a ring:

Resulting execution will not solve consensus, but ...
„Easy Impossibility Proofs“ [FLM86] (II)

Local view of p_1, p_2:

By Validity: Decision must be $y_1 = y_2 = 0 \ldots$
„Easy Impossibility Proofs“ [FLM86] (III)

Local view of p_3, p_4:

By Validity: Decision must be $y_3 = y_4 = 1$ …
„Easy Impossibility Proofs“ [FLM86] (IV)

Local view of p_2, p_3:

By Agreement: Decision should be $y_2 = y_3 \rightarrow$ Contradicion

U. Schmid 182.703 PRDC 38
Food for Thoughts
Exercise: Consensus via Lossy Links

• Consider a synchronous system of n=2 processors that never fail, which are connected via a pair of directed links that may lose messages:

• Using a bivalence-proof, show that deterministic consensus is impossible even when, in every round, at most one (unknown) link may be lossy.

• Prove that consensus can be solved under any of the following two assumptions:
 i. The link p → q is not lossy in some round.
 ii. Exactly one of the links is lossy in every round.
The End
(Part 1)
References