
1

A Maintenance-Oriented Fault Model for the
DECOS Integrated Diagnostic Architecture

P. Peti, R. Obermaisser, A. Ademaj, H. Kopetz
Vienna University of Technology

Austria
email: {php,ro,ademaj,hk}@vmars.tuwien.ac.at

Abstract— The increasing use of electronics in the au-
tomotive and avionic domain has lead to dramatic im-
provements with respect to functionality, safety, and cost.
However, with this growth of electronics the likelihood of
failures due to faults originating from electronic equipment
also increases. In order to tackle prevalent diagnostic
problems such as the reduction of the fault-not-found ratio,
a maintenance-oriented fault model is needed that serves
as the basis for the classification of experienced failures.

In this paper we introduce such a maintenance-oriented
fault model that establishes the conceptual foundation of
the diagnostic services of the DECOS integrated architec-
ture. The fault model takes the component-based nature
of today’s distributed embedded systems into account. Ac-
cording to this model each experienced failure is classified
according to the field replaceable units of the system.

Index Terms— Maintenance, Diagnosis, Fault Model,
Integrated Architecture, No-Fault-Found Problem

I. I NTRODUCTION

There is a significant trend in the automotive and
avionic industry to increase the number of electronic de-
vices to provide functionality that goes beyond common
mechanic/hydraulic subsystems. However, despite all the
benefits it is important to state that with the increasing
use of electronic devices in transportation systems the
likelihood of malfunctions of electronics and thus the
numbers of defective electronic components will also
increase.

From a maintenance point of view the most important
question is whether a replacement of a particular com-
ponent will put an end to spurious system malfunctions.
Today’s onboard diagnostic systems typically do not
adequately support the service technician in the fault
isolation process. Thus, maintenance engineers have to
rely upon incomplete and imprecise information. This
lack of information often results in replacements of
working components [1], [2]. Even worse, in many
cases the faulty component remains unchanged. The
resulting negative publicity and increased warranty costs
are serious factors that influence not only the success of

a product but also delay the introduction of emerging
technologies. For instance, in the avionic domain the
No Fault Found (NFF) problem is estimated to account
for approximately 300 million dollars per year [3]. With
an average cost of 800$ per removal of a single Line
Replaceable Unit (LRU), there is a huge potential of
cost reduction.

This paper devises a maintenance-oriented fault model
in the context of integrated architectures in in order
to reduce the maintenance associated costs. Integrated
architectures promise massive cost savings by providing
the possibility to share components among multiple
applications in order to stop the increase of the number of
deployed components. The integrated DECOS architec-
ture [4] for dependable distributed embedded real-time
systems is designed to overcome the “one function – one
control unit” philosophy.

In order to tackle existing maintenance problems such
as the NFF phenomenon, we propose a maintenance-
oriented fault model that takes the component-based
nature of distributed systems into account. Based on
existing classification schemes [5], [6], [7], [8], [9] a
refined Field Replaceable Unit (FRU) centered model
is derived. This model establishes a basis for a better
understanding of the diagnostic problems of modern
distributed systems and introduces a maintenance spe-
cific fault classification. According to this model, the
diagnostic analysis algorithms of the DECOS integrated
architecture perform a classification of the experienced
failures and anomalies in order to determine whether a
change of a particular FRU can eliminate the experienced
problem, or if a replacement (i.e. change of hardware or
update of software) will prove to be ineffective. In case
of distributed embedded real-time systems deployed in
the automotive or avionics domain an FRU is defined
as a component which is designated to be removed and
replaced by line maintenance personnel, i.e. the service
technician (see for instance [10]).

The paper is structured as follows. Section II de-
scribes the integrated architecture that is developed in

2

C1 Predictable Message
Transport

C2 Fault-Tolerant
Clock Synchronization

C3 Strong Fault Isolation
C4 Consistent Diagnosis

of Failing Nodes

Time-Triggered
Architecture

Component condition assessment
Advanced maintenance strategies
Engineering feedback
Offline analysis

Experienced failures
are classfied according
to a maintenance-
oriented fault model

High-Level Diagnosis Services

Encapsulation, Virtual
Networks, Diagnosis,...

JobJobJobJob JobJob JobJobJobJob

Internal
hardware faults

Random external
hardware faults

Software faults

Time-Triggered
Core Architecture

Fig. 1. Integrated System Architecture

the Dependable Embedded Components and Systems
(DECOS) EU Framework Programme 6. In particular,
the integrated diagnostic architecture of DECOS uses the
proposed model as the basis for the diagnostic assess-
ment process to determine the health status of the FRUs
of the integrated system. In Section III the maintenance-
oriented fault model is introduced and mapped onto the
DECOS field replaceable units. Section IV presents sub-
stantial evidence why the chosen fault model is suitable
for classifying the prevalent fault types experienced in
today’s electronic systems. In Section V the determina-
tion of a maintenance action based on the fault model
will be discussed. The paper is concluded in Section VI.

II. T HE DECOS INTEGRATED DIAGNOSTIC

ARCHITECTURE

This section describes the DECOS integrated archi-
tecture for dependable distributed embedded real-time
systems [4] and focuses on the integrated diagnostic
services. The DECOS integrated architecture provides
a framework with generic architectural services for inte-
grating multiple application subsystems within a single,
distributed computer system, while retaining the error
containment and complexity management benefits of
federated systems.

A. Functional System Structure

For the provision of application services at the con-
trolled object interface, the services of a real-time com-
puter system are divided into a set of nearly-independent
subsystems, each providing a part of the computer sys-
tem’s overall functionality. We denote such a subsystem
as a Distributed Application Subsystem (DAS), since

the implementation of the corresponding functionality
will most likely involve multiple components that are
interconnected by an underlying communication system.
The implementation as a distributed system is a pre-
requisite for establishing fault-tolerance by redundantly
performing computations at separate components that
fail independently. In addition, the DECOS integrated
architecture groups DAS with the same criticality into
subsystems (e.g., safety-critical vs. non safety-critical as
illustrated in Figure 1).

In analogy to the structuring of the overall system, we
further decompose each DAS into smaller units called
jobs. A job is the basic unit of work that employs a
virtual network for exchanging information with other
jobs, thus working towards a collective goal. The access
point of a job to the virtual network is denoted as aport.
Every job has access to its relevant transducers, either
directly via the controlled object interface or via a virtual
network of known temporal properties.

B. Waist-Line Architecture

As depicted in Figure 1, the integrated DECOS ar-
chitecture is based on a time-triggered core architecture
that meets the safety requirements of ultra-dependable
applications. The core of such an integrated distributed
architecture for time-critical systems must provide four
core services: predictable transport of messages, fault-
tolerant clock synchronization, strong fault isolation, and
consistent diagnosis of failing nodes. Any architecture
that provides these core services can be used as a base
architecture for the DECOS integrated system architec-
ture.

Based on the core architecture,high-level services
such as a virtual network service as the communication

3

Safety-Critical
Subsystem

Safety-Critical
DAS

Non Safety-Critical
DAS

Realization of the DECOS
Architectural Services

TIME-TRIGGERED PHYSICAL CORE NETWORK

Connector

Non Safety-Critical
Subsystem of the Component

Non Safety-Critical
Subsystem of the Component

Safety-Critical
Subsystem

A
pp

lic
at

io
n

C
om

pu
te

rs
Ex

te
nd

ed
C

om
m

un
ic

at
io

n
C

on
tr

ol
le

r

Non Safety-Critical
DAS

Fig. 2. DECOS Component Structure

infrastructure tailored to the needs of each DAS, an
encapsulation service for ensuring inner-component error
containment, hidden gateways for the interconnection
of DASs to improve quality of service and eliminate
resource duplication, a redundancy management service
(e.g., voting), and the diagnostic service as illustrated in
Figure 1 are deployed.

C. The DECOS Component

In the DECOS component model we distinguish be-
tween two kinds of structuring,horizontal and vertical
structuring as depicted in Figure 2. The vertical structur-
ing of the component provides two subsystems within a
component. Thesafety-critical subsystemis an encapsu-
lated execution environment for ultra-dependable appli-
cations. Thenon safety-critical subsystemoffers an envi-
ronment for those applications having less stringent de-
pendability requirements. For these applications, empha-
sis lies on low-cost, flexibility and resource efficiency.
The safety-critical and non safety-critical subsystems are
established by means ofspatial and temporal inner-
component partitioning [11]. In the DECOS component
illustrated in Figure 2, two non safety-critical Distributed
Application Subsystems (DASs) and one safety-critical
DAS are shared among the DECOS component. Each of
these DASs comprises one or more jobs.

A DECOS component can be horizontally structured
into two layers: the realization of the core and high-
level architectural services as described in Section II-B
by means of an extended communication controller and
the the application layer. The latter is comprised by ap-
plication computers hosting one or more jobs. Each job
is executed in a dedicated partition and communicates
with other jobs of the same DAS by utilizing the virtual
network services via the port interface.

For a more detailed description (e.g., constituting
hardware elements and software modules) and an analy-
sis of this model with respect to certifyability, encapsu-
lation and independent development aspects refer to [4].

D. Integrated Support for Diagnosis

The DECOS integrated diagnostic architecture is de-
signed to meet the requirements imposed by industry
with respect to diagnosis such as support for advanced
maintenance strategies, intellectual property protection,
detection of correlated errors, service technician assis-
tance and assessment of fault-tolerance mechanisms [12].
The model of the diagnostic architecture as illustrated
in Figure 1 can be divided into three consecutive steps.
Once a failure or anomaly is detected by the detection
mechanisms of the diagnostic services, a corresponding
message is disseminated via a dedicatedvirtual diagnos-
tic network. A virtual network is an encapsulated overlay
network on top the time-triggered core physical net-
work [13]. The high-level virtual network service ensures
that strong fault isolation between virtual networks of
different DASs is guaranteed. This way no probe effect
at network level can be introduced [14]. The subsequent
analysis of this information is located in an encapsulated
diagnostic DASin order to determine the nature of an
experienced fault with respect to a maintenance-oriented
fault model. The diagnostic DAS outputs a trust level for
each component, that acts as the basis for the decision
of the maintenance engineer on the question whether
a FRU should be replaced or remain in the system.
The maintenance-oriented fault model introduced in this
paper forms the basis for any health status assessment
of the FRUs by the diagnostic DAS of the integrated
system.

E. Fault Hypothesis

The fault hypothesis defines the fault model with re-
spect to fault tolerance. In the integrated system architec-
ture, we perform a differentiation of Fault Containment
Regions (FCRs) for hardware and software faults [15].
For hardware faults, we regard a complete component as
a FCR, because a component will be implemented as a
System-On-a-Chip (SOC) and contains shared physical
resources (e.g., processor, power supply). The failure
mode of a hardware FCR is assumed to be arbitrary. The
failure frequency in case of permanent hardware failures
is in the order of 100 FIT [16]. In case of transient
failures a significantly higher failure frequency in the
order of 1000-10000 hours is assumed.

For software faults, we regard a job as a FCR. The fail-
ure mode of a job is a violation of the port specification

4

in either the time or value domain. In case of a failure
in the value domain, the content of a message does not
conform to its specification, while in case of a timing
failure, the send instant of the message is incorrect.

III. T HE MAINTENANCE-ORIENTED FAULT MODEL

OF THE DECOSARCHITECTURE

The purpose of a model is to develop a reduced
representation of the world, that helps in understanding
the problem domain [17]. Related fault models presented
in [5], [6], [7], [9] are developed for the purpose of
fault tolerance. A fault model for maintenance, however,
aims at allowing a determination whether a particular
fault affecting the system will require a replacement of a
FRU. Thus, a fault classification is necessary, that allows
deducing the adequate maintenance strategy from tracing
back the fault-error-failure chain. In case of integrated
architectures such a fault classification needs to include
both component hardware and software module faults,
since in integrated architectures a component is shared
among multiple software modules.

In the following we elaborate on the constituting
elements of the maintenance-oriented fault model we
consider important in the context of the DECOS archi-
tecture.

A. Unit of Replacement

There exists a strong relationship in the DECOS
architecture between the fault hypothesis (i.e. the fault
model for faul-tolerance aspects) and the fault model for
maintenance. While in the fault hypothesis the FCRs are
identified, i.e. the hardware units limiting the immediate
impact of a fault to the system [18] of the system, in the
maintenance-oriented fault model the FRUs with respect
to hardware faults are stated. Typically, there will be a
congruence, since maintenance of faulty components is
also a key aspect in establishing the required level of
dependability in a faul-tolerant system.

Hence, in the DECOS architecture we consider a
component as the FCR/FRU for hardware faults and a
job as the FCR/FRU for software design faults.

B. Fault Classification

In the fault hypothesis the statements about the faults
at system level are defined that may occur if a FCR ex-
hibits a failure (system level). In case of a maintenance-
oriented fault model on the other hand, a classification
of the faults affecting a FRU needs to be specified (FRU
level). Thus, the two models classify faults at different
levels in the fault-error-failure chain [6] as illustrated
in 3.

Fault-ToleranceMaintenance

Fault Error Failure Fault Error Failure ….

at System Levelat FRU Level

Replacement Strategy
Which FRU to replace?

Reaction to Failures
(e.g. Recovery, Error Masking)

Fig. 3. The Fault-Error-Failure Chain

As stated in [15] the concept of fault is introduced
to stop the recursion of the “fault-error-failure” chain.
From a maintenance point of view, we are only interested
in categorizing the type of fault of the experienced
failure into classes that allow a determination whether
a replacement is the correct maintenance strategy. Thus,
by reversing the fault-error-failure chain [6], it must
be possible for the diagnostic subsystem to determine
whether a change of a FRU can eliminate the experienced
problem, or if a replacement (i.e. change of hardware
or update of software) will prove to be ineffective. On
the basis of the maintenance-oriented fault model a
corresponding maintenance action for each fault class
needs to be stated.

Consequently, we stop the recursion at Field Replace-
able Unit (FRU) level. In the context of the DECOS
architecture in case of hardware faults the FRU is
considered to be complete node computer, while for
software faults the FRU is considered to be a job. The
fault classification for each FRU needs to be derived by
analyzing the prevalent types of faults affecting the given
FRU.

Consider for instance a crack in a Printed Circuit
Board (PCB). Such a crack may originate from wear-
out of the material due to environmental (external) stress,
such as vibration (e.g., rough roads), shock (e.g., chuck-
holes, hard landings) and changes in temperature (i.e. ex-
pansion and contraction). Depending on operational con-
ditions this crack may cause the component to fail
transiently. From a maintenance point of view (at the
service station) the first level cause due to mechanical
stress is not of interest. In analogy the exact element of
the FRU that is subject to failure is of limited interest for
a service technician. By taking a maintenance-oriented
view the most important fact we are interested in is that
the hardware fault can only be eliminated by replacement
of the FRU. The analysis, which part of the FRU caused
the malfunction is in the scope of the inspection of faulty
nodes at the Original Equipment Manufacturer (OEM)
(and not part of the maintenance action at the service
station).

5

Borderline

External

Internal

Fig. 4. Component Fault Model

C. The Component Fault Model

The model takes the component-based nature of to-
day’s distributed systems into account by considering a
component as a FRU for hardware faults. Consequently,
we devise the following fault classes as illustrated in
Figure 4. Faults that originate outside the component
boundaries are denoted asexternal faults. External faults
are characterized by having no permanent effect on the
functionality of the component. A restart of the compo-
nent with subsequent state synchronization is a typical
strategy to restore a correct state. An example for an
external fault is Electromagnetic Interference (EMI) [19].
So-calledborderline faultsare the class of faults that
cannot be judged to be external or internal with respect
to the component boundary. An example for such a fault
is a connector fault (a connector consist of two parts, one
attached to the component, the other attached to the cable
loom). Since this class is responsible for a significant
number of system failures [20], we extend the boundary
classification of faults as introduced by Laprie [15] by
adding the class of borderline faults. Finally,internal
faults cover those faults that originate from within the
FRU boundary (e.g., crack in the PCB). In contrast to
external faults, these faults can only be eliminated by a
replacement of the component.

D. The Job Fault Model

In the context of integrated architectures, such as
the DECOS architecture, a further differentiation of
component internal faults is possible. While in architec-
tures with the “1 Function - 1 Electronic Control Unit
(ECU)” design philosophy such a differentiation is futile,
in integrated architectures such a finer granularity is
important for the discrimination between software faults
and hardware faults.

The increasing complexity of software deployed in
embedded systems requires the online diagnostic ser-

JOB INHERENT

JOB BORDERLINE

JOB EXTERNAL

OB

Software Design Fault

Sensor/Actuator Fault

(i.e. Architecture Configuration)

(i.e. Internal Hardware Fault)

Fig. 5. Job Fault Model

vices of an architecture to provide means for identifying
software design faults. An empirical study, although
based on field data from the telecommunication industry,
identified that only a small number of software modules
is causing the majority of software related failures during
operation [21]. If we act on the assumption, that a similar
distribution of software faults is also feasible for the
automotive/avionic domain, then a correlation of field
data gathered by the online diagnostic services of a
representative population provides a solid foundation for
the identification of software design faults.

As depicted in Figure 5 we discriminate for each job
between job inherent, job borderline, and job external
faults.Job externalfaults are faults affecting the internals
of a component but do not origin within the boundaries
of the job. In case multiple job external faults can be ob-
served in one component, a component internal hardware
fault can be assumed. Similar to the borderline faults at
component level,job borderlinefaults are faults affecting
the connectors, i.e. the ports of the jobs. Consider for
example event-triggered jobs and ports accordingly. In
case the jobs are operating as specified in term of sending
messages according to an a priori defined probability
distribution, there still might be the case where queue
overflows occur (i.e. messages are lost). In this case
a false configuration of the respective virtual network
service is causing system malfunction. Job borderline
faults are thus configuration faults. Finally, the class of
job inherent faults are those faults that are originating
from within the job. The class of job inherent faults can
be further decomposed intosoftware design faultsand
sensor/actuator faults. In the DECOS architecture each
job is considered to have exclusive access to its sensors
and actuators. Since, in general, one cannot differentiate
by observing only the interface state whether a mal-
function of the I/O hardware or a software design faults
is causing unspecified job behavior, a differentiation of
these two types is only possible by including job internal
information into the assessment process.

Figure 6 gives an overview of the introduced
maintenance-oriented fault model and relates the intro-

6

FAULT

COMPONENT
EXTERNAL

COMPONENT
BORDERLINE

Hardware

JOB
EXTERNAL

Connector
Hardware

Permanent Transient PermanentPERSISTENCE:

DOMAIN:

COMPONENT
BOUNDARY:

COMPONENT
INTERNAL

JOB
BORDERLINE

Permanent

JOB
INHERENT

Permanent

HardwareSoftware
ConfigurationSoftware Sensor/Actuator

Hardware

Permanent

JOB
BOUNDARY:

Fig. 6. Overview of the Maintenance-Oriented Fault Model

duced fault model to the terms introduced in [6], [15].
The system boundaries are refined into component and
job boundaries as the FRUs for hardware and software
faults.

E. Assumptions behind the Fault Model

The reliability of electronic devices has been the
subject of significant improvements in the manufacturing
process by the IC industry. The permanent failure rate is
very low compared to electronic components manufac-
tured a decade ago [16]. The tremendous improvements
in the reliability of semiconductor devices is reflected
in Pecht’s Law. It suggests that semiconductor device
reliability in terms of time-to-failure is doubling every
fourteen months based on activation energy trends of
semiconductor devices [22].

The types and causes of failures for electronics have
changed over the years. Failure analysis in recent years
has revealed that some failure causes may have been
reduced by improvements in technology but due to
the higher level of complexity and downsizing other
failure classes have emerged [23]. According to Con-
stantinescu [24] the primary cause for the significant
increase of soft error rates are shrinking geometries,
lower power voltages and higher frequencies. These
result in higher sensitivity to neutron and alpha particles,
and consequently have an impact on dependability by
increasing the transient failure rates. Furthermore, due
to semiconductor process variations and manufacturing
residuals the likelihood of component internal faults
leading to transient failures is growing. The shrinking of
geometries in semiconductor design has also significant
impact on future design processes, such as nanometer
design [25].

It can be summarized that the tremendous improve-
ments made by the IC industry with respect to permanent
failure are extenuated by increasing transient failure
rates due to side effects of decreasing geometries of
semiconductor technology.

Time

Failure
rate

Stress related
failures

Wearout
failures

Quality
failures

I
Infant

Mortality
II

Useful Life
III

Wearout

Fig. 7. Bathtub curve

As depicted in Figure 7 the reliability of electronic
components can be illustrated by the bathtub curve [26,
p. 5-28]. The bathtub curve is divided into three dis-
tinct phases, the infant mortality, the useful life, and
the wearout phase. According to [27] infant mortality
failures are typically due to mistakes made during the
manufacturing process. Thus, improved manufacturing
can significantly reduce the incidence of such failures
(i.e. fault avoidance).

Based on field data from the automotive industry, Pauli
and Meyna [16], [28] provide some very interesting facts
on the failure rates during the period of infant mortality
and useful life of the bathtub curve. In contrast to
wearout failures that affect the entire population, infant
mortality failures tend to affect only a subpopulation of
the shipped product [27]. The reliability curve visualizes
that the average failure rate of an ECU in the useful life
period is very high. Reported failure frequencies are 50
out of 1 Million ECUs in 1 year. Harsh operating condi-
tions with increased stress factors like temperature, shock
and vibration, humidity, contaminants and radiation are
affecting the reliability significantly [29], [30]. Such
failure mechanisms due to accumulation of incremental
damage beyond the endurance of the material are termed
wearout mechanisms [31]. Unfortunately, the wearout
period is typically not covered in statistics, since the
manufacturers are only interested in field data during
the warranty period of the product [16]. Wearout due
to the continuous use and stress of components is a
natural phenomenon. Consider for instance the break
pads of a car. According to the time of operation and
operating conditions the abrasion of the pads is more
or less advanced. The same is true for the profile of
a tire (e.g., on the landing gear of an airplane). For
many non electronic devices there exists the possibility
of visual assessment of the condition of the equipment.

7

Suitable indicators can be measured (e.g., depth of
the remaining profile of a tire) and appropriate action
can be taken by the service mechanics. The question
raises, whether we can find suitable indicators in the
domain of electronic devices that allow to effectively and
undoubtedly assess the condition of electronic devices. If
advanced maintenance techniques like Condition-Based
Maintenance (CBM) are envisaged, then such indicators
need to be identified [32].

A suitable indicator for wearout of electronic devices
is the increase of transient failures in the system [24],
[33]. In fact, these spurious failures need to be ana-
lyzed to distinguish between random external transient
disturbances (e.g., due to EMI) originating from outside
the LRU and transient failures caused by internal faults
(e.g., solder joint cracks, loose contacts).

In order to allow the online diagnostic mechanisms to
determine the type of fault that is affecting a particular
FRU it is important to make quantitative statements
about the underlying failure rates for both transient
and permanent faults. In the following we present the
assumptions behind the DECOS maintenance-oriented
model:

• Transient Hardware Failure Rate. The tran-
sient failure rate of a FRU with respect to hard-
ware faults is assumed to be in the order of
100.000 FIT, i.e. about 1 year. This failure rate is
not well substantiated.

• Duration of Transient Hardware Failures. The
duration of a transient hardware FRU failure can be
assumed to be in the order of tens of milliseconds.
For example in [34], the transient outage-time of an
automotive steering system can be estimated as less
than 50 ms.
The time-triggered core physical architecture en-
sures that transient failures longer than the length
of a slot of the Time Division Multiple Access
(TDMA) round can be detected by other FRUs.
In current automotive On-Board Diagnosis (OBD)
systems, transient failures that are lasting for more
than 500 ms are recorded. Failures with a significant
shorter duration cannot be detected,

• Duration of Correlated Transient Hardware
Failures. Correlated FRU failures, i.e. a fault affect-
ing more than one FRU at the same time, are as-
sumed to be experienced within a bounded interval
of time. According to the ISO 7637 standard [35]
the duration of an EMI burst is in the order of
10 ms.

• Wearout Indicator. In the DECOS model we re-
gard increase of transient failures of a FRU as
a suitable indicator for wearout of the electronic

device [24].
• Permanent Hardware Failure Rate. The perma-

nent failure rate of a FRU with respect to hardware
faults is considered to be in the order of 100 FIT,
i.e. about 1000 years [16].

• Software Faults Distribution. We assume that
safety-critical jobs are certified to the necessary
degree and thus free of software design faults. In
case of non safety-critical jobs, we assume that a
minority of the deployed software FRUs is causing
the majority of software related failures during
operation [21].

IV. SUITABILITY ANALYSIS

The following section is devoted to underpinning the
suitability of the introduced maintenance-oriented fault
model to differentiate faults experienced in real-world
systems. We present an analysis that covers examples
from literature for both the component and job classifi-
cation.

A. Component Fault Model

1) Internal: In the following we will discuss compo-
nent internal fault sources on the basis of representative
examples found in literature.

a) Printed Circuit Board: The PCB interconnects
the constituting hardware elements of a node.

• Design.A typical design fault with respect to PCB
is erroneous layout. Consider for example faulty
spacing between wires or incorrect placing of elec-
trical elements on the PCB.

• Manufacturing. Manufacturing faults include all
faults originating from the technical process of
creating the PCB. Here, solder mask problems,
defective vias or wrong assembly are among the
typical faults. Also soldering related faults, such
as defective solder connections, shorts or loose
contacts fall into this category.

• Operational. Environmental stress factors (e.g., vi-
bration, shock, humidity, chemicals) can lead to
subsequent failure of electronic devices. Continuous
exposure to these factors can result in cracks in the
PCB due to wear-out of the board or over-stress
resulting from thermal cycling or shock. The PCB
is the primary source of component failure in case
the ECU is exposed to stress conditions [29].
b) Discrete Elements:According to field stud-

ies [16], [29] resistors diodes and transistors have the
lowest failure rates. Capacitors are an exception since
these elements are more affected by aging processes and
thus having a higher failure rate due to wearout that other
discrete electronic elements.

8

c) Quartz: Since measurement of time in computer
systems is based on frequency of oscillation of a quartz
crystal, the correct functionality of these elements is
of paramount importance. In case the system relies on
precise timing information, environmental influences and
wearout can have a significant impact on the drift of the
clock. Consider for example systems where components
are synchronized in order to achieve a consistent global
timing information. Here, a defective quartz can cause
a component failure due to loss of synchronization. As
indicated in [29] the failure rate cannot be neglected.
During operation the quartz can be influenced by many
factors. Low power supply, thermal cycling and mechan-
ical damage due to shock and vibration are probably
the most common causes for permanent or transient
faults [36].

d) Integrated Circuits:As indicated by the failure
rates provided in [16] the higher the integration of the
electronic elements, the higher the likelihood of failure.
Therefore, integrated circuits are causing a significant
number of component failures. In the following we will
identify possible design, manufacturing and operational
faults. An excellent overview on semiconductor faults
can be found in [37].

• Design. The reliability of electronic devices was
subject to significant improvements in the last
decades. However, the downsizing of semiconductor
features has lead to decrease in the gate oxide
thicknesses and the distance between metallization,
resulting in higher electric fields across the gate and
possibility of failure, such as gate oxide breakdown
and hot carrier damage [22].
Due to the increasing level of complexity of modern
integrated circuits the likelihood of design faults
is non-negligible. For example Lev and Chao [25]
state that, in nanometer design, wiring delay ac-
counts for the vast majority of overall delay. Thus,
the shrinking of geometries in semiconductor design
has significant impact on future design processes.
Besides wiring delay, cross coupling effects origi-
nating from incorrect design can result in transient
failures during operation.

• Manufacturing. Due to semiconductor process
variations such as intra-chip variances or mask
alignment and manufacturing residuals the likeli-
hood of reoccurring permanent faults leading to
transient failures is growing [24]. For example con-
sider a short of metal lines caused by an unexposed
photo resist or a solid-state particle deposited on the
metal layer before metal lithography.

• Operational. According to Constantinescu [24] the
primary cause for the significant increase of soft

error rates are shrinking geometries, lower power
voltages and higher frequencies. These result in
higher sensitivity to neutron and alpha particles, and
consequently have an impact on dependability by
increasing the transient failure rates [37].
Another significant source of failure is variability
in power supply and temperature effects. As stated
in [38] temperature has strong influence on the
properties of semiconductor materials. On the de-
vice level, mainly degradation and breakdown of
oxides are the main cause of failure.

2) Borderline: Wiring and connector problems ac-
count for a significant proportion of electronic system
failures. Several studies document the significant pro-
portion of connector and wiring failures in distributed
embedded systems. Field data cited by Swingler et
al. [20] indicate that more than 30% of electrical failures
are attributed to connection problems. Considering, that a
luxury car can have up to 400 connectors this number un-
derpins the potential for failures due to connectors in the
automotive domain. In the avionic domain, Galler and
Slenski identify interconnection problems as the major
cause of aircraft electrical equipment failures [39] with a
percentage of 36%. These numbers are underpinned by a
study of the US Air Force reporting that 43% of mishaps
related to electrical systems were due to connectors and
wirings [40], [41].

The reliability of the interconnection system is of great
importance for the correct operation of an electronic
system. The physical interface between the electronic
control units (i.e. the components) and the intercon-
nection system remains one of the weakest links in
terms of reliability, implying potentially catastrophic
consequences [42]. For more information concerning the
reliability of connectors the reader is referred to [43].

A significant problem regarding connector and wiring
failures is the fact that the failure analysis or the testing
procedure may itself be a corrective action for the source
of the failure (e.g., such as when resetting a connector or
when applying wipe to a connector electrical pad) [23].
The same is pointed out by [44], who states that analysis
and repair is often difficult due to the possibility that
any evidence of failure is inadvertently destroyed during
extraction or inspection.

3) External: In the following we will discuss the
most important external faults that have an impact on
the functionality of the DECOS components. The class
of external faults covers external influences such as
cosmic radiation, temperature, EMI, shock, vibration,
and humidity, only to name a few [30]. An extensive list
of environmental factors having impact on the reliability
of a component can be found in [26, p. 7-129].

9

a) Cosmic Radiation:In aerospace transient distur-
bances of components are frequently caused by Single
Event Upsets (SEUs) originating from cosmic radia-
tion. According to [31] such radiation induced fail-
ures in avionics are caused by uranium and thorium
contaminants, and secondary cosmic rays. Among the
consequences of radiation are aging effects (wearout),
embrittlement of materials, and overstress soft errors in
electronic hardware.

In [45] Single Event Upsets (SEUs) caused by cosmic
rays in avionics are investigated. Based on the experi-
mental evidence from measured in-flight occurrences of
SEUs fault rates in dependence of the flight altitude are
evaluated and the sources of such incidents identified.
However, SEU are not restricted to higher altitudes as
shown in [46].

b) Electromagnetic Interference:EMI imposes a
serious threat to the intended function of electronic
systems deployed in various application environments.
In the following we will give a short overview of EMI
related problems in the avionic and automotive domain.

One major source of EMI in the avionic domain is the
effect of lightning on aircrafts. Besides severe effects
on the aircraft skin (e.g., melting, deformation due to
pressure waves), damage in externally mounted materials
and vaporization of conductors, a serious consequence
of lightning for the electronic equipment are the electric
and magnetic fields. In [47] a 16.5% failure rate of elec-
tronic equipment of commercial airlines due to lightning
strokes is reported. Since modern aircraft highly depend
on the correct functionality of the electronic flight control
system standards exist, to provide necessary aircraft
protection [47].

Similarly, in the automotive domain the increasing
use of electronics makes cars more susceptible to prob-
lems originating from EMI, and thus makes it a major
consideration in vehicle electrical system design [48].
For example in [49] serious effects of EMI are men-
tioned, namely the unexpected shut off of car engines
on highway overpasses. Another example for transient
disturbances generated by EMI is noise of the ignition
system of a car [50]. The UK based Motor Industry
Software Reliability Association (MISRA) consortium
has released guidelines for dealing with EMI in au-
tomotive environments [51]. The guidelines consider
interference effects on various aspects of processing,
for example communication lines, digital and analogue
inputs, corruption of memory and loss of control of the
processor. Similar impacts of EMI have been studied
in [52].

A study on effects of electromagnetic interference on
controller-computer upsets and system stability revealed

that controllers are more susceptible to these unwanted
noises due to shrinking device size, lower switching
energy, and higher speed operations [19]. Typically,
these external faults are likely to be transient and cause
primary functional error modes in digital systems.

c) Environmental Stress Factors:Since transport
vehicles, such as cars and airplanes, are usually ex-
posed to harsh environmental conditions, the reliability
of the deployed electronics is also exposed to this
hard conditions [53]. Especially, climatic and mechanical
stress decreases the lifetime of electronic equipment. For
example, humidity, extreme temperature and moisture
in combination with stress factors such as shock and
vibration results in increasing wearout rates [54], [29].

Just to give an impressio, in the automotive industry
temperatures can reach up to200◦C on the engine
or even 800◦C at the exhaustion system. Similar, the
vibration and shock levels can reach up to 50g [38].

Thermal cycling, continuous vibration and shocks and
environmental conditions like salt spray, dust or gravel
that weaken the protection mechanisms (e.g., sealing,
housing) are a serious threat to the reliability of of
electronic devices deployed in electronic architectures.

Due to continuous exposure to environmental stress,
external faults can be transformed into internal compo-
nent hardware faults (e.g., continuous shock causes crack
in PCB). Such an accumulation of incremental damage
beyond the endurance of the material is termedwear-out
fault [31].

d) Wiring: Wiring related problems are posing a
serious threat to safety-critical systems. It is an acknowl-
edged fact that every densely wired system is vulnerable
to consequences of wiring problems. For instance Swis-
sair 111 and TWA 800 have crashed because of faulty
wiring [55].

According to [40] the aging process of wiring can
be understood as degraded performance due to accu-
mulated damage from long-term exposure. This includes
damages resulting primarily from operational conditions,
such as damages from chemical, thermal, electrical,
and mechanical stress. Besides these stresses induced
by the operational environment damages also originate
from installation and maintenance practices. Such wiring
failures frequently appear as broken conductors and dam-
aged insulation which can be disrupt electrical signals
and/or lead to arcing, that may have fatal consequences.

B. Job Fault Model

1) Inherent: The class of job inherent faults as intro-
duced in III-D is divided into software faults and trans-
ducer (i.e. sensors and actuators) faults. In the following

10

we will discuss why such a classification is feasible for
today’s distributed embedded real-time systems.

a) Software Faults: Gray [56] divided software
faults into Bohrbugs and Heisenbugs. Bohrbugs are
software design faults that deterministic in nature. In
contrast to Bohrbugs, that can be identified during test-
ing, Heisenbugs belong to the class of software design
faults, that are very difficult to detect through testing
procedures, since Heisenbugs are perceived as transient
failures.

Although automatic code generation tools such as
TargetLink from dSpace or the Real-Time Workshop
for MATLAB /Simulink are increasingly becoming ac-
cepted in industry [57] in order to reduce software
implementation faults [58] and speed up development,
the increasing complexity of applications leads to an
increased probability of software design faults. In par-
ticular, Heisenbugs remain frequently undetected and
can only be identified by a fleet analysis during full
operation of the product. For example, a software bug in
an electronic management unit of the fuel pump caused
some cars to stall if the fuel tank was below one third
full. The resulting recalls not only impose a serious
financial burden for the manufacturer but also have a
significant impact on the reputation of the products.

In [59] the support of integrated diagnostics for soft-
ware is underpinned by the provision of statistics indi-
cating that 17% of the efforts associated with software
maintenance are for correcting faults. Furthermore, 54%
of the efforts associated with software support require
an integrated set of diagnostic tools and techniques. The
importance for the detection of software faults during
system operation is stressed by stating the fact that
despite all efforts to reduce software faults during devel-
opment, there will still be latent software faults during
testing and deployment (at least for non safety-critical
systems). The issue of faults that can only be identified
during operation is also raised in [60] in the context
of the automotive domain. During product development
and testing low quality issues are relatively easy to
identify because they are uncovered with smaller sample
size. The problem of current vehicle testing process is
the identification of statistically very unlikely occurring
incidents that become only identifiable after high volume
production.

A recent study of software faults revealed that only a
small number of software modules contain most of the
faults discovered during pre-release testing [21] support-
ing the results of [61]. However, the discovery of these
faults during pre-release testing is a very challenging
task. In case of software faults detected during operation
a distribution according to the20-80 rule has been

identified, indicating that 20% of the software modules
are causing 80% of the software related failures during
operation.

b) Transducer Faults:Sensors and actuators are the
linkage between the controlling computer system and the
controlled object. In the DECOS architecture each job is
considered to have exclusive access to its sensors and
actuators (e.g., electromechanical brake, window lifter,
wheel speed sensor). An overview of sensors currently
deployed in automotive industry can be found in [53],
[62]. For the avionics domain the reader is referred
to [63]. In the automotive domain the expected lifetime
of sensors is assumed to be in the order of the lifetime of
the car. For example in [64] the lifetime of automotive
pressure sensors is specified between 10 and 15 years.

One approach to the highly application-specific di-
agnosis of job inherent faults is model-based diagno-
sis [65]. Based on a diagnostic model the application
programmer transforms a model into application-specific
assertions that are checked at run time. In [66] an exam-
ple for model-based diagnosis in the automotive domain
is presented. The author presents a diagnosis solution for
the air-intake system of an automotive engine.

2) Borderline: The configuration of a distributed em-
bedded real-time system is typically tool supported in
order to minimize the possibility of faulty configurations
(for instance see [67]). The class of borderline faults
comprises those faults that emerge by deriving the con-
figuration parameters on the basis of a communication
model that is based on assumptions that do not hold in
reality.

Consider for example an event-triggered legacy ap-
plication. Temporal correctness of such an application
can depend on temporal properties, such as bandwidth
guarantees, bounds on communication latencies, and
predefined message orderings. Furthermore, knowledge
about the temporal behavior of communication activities
is essential for the dimensioning of message buffers as
required to tolerate temporary imbalances of message
interarrival and service times [68]. If a subset of the
assumptions of a legacy subsystem was made implicitly
and not described in technical documentation, then deter-
mining a valid configuration is complicated. With incom-
plete knowledge about the assumptions that have been
made by legacy applications concerning the underlying
architecture, finding a consistent configuration becomes
a non-trivial and error-prone activity. We denote any
misconfiguration of the architectural services that results
from incomplete knowledge about legacy applications as
a borderline fault.

3) External: A job external fault can be mapped
onto a component internal hardware fault. In case of

11

Wearout

Time

Space

Value

Massive Trasient

increasing frequency
as time progresses

approximately at the same
time (within a small delta)

one component only multiple components with
spatial proximity

increasing deviation from
correct value, at the verge

of becoming incorrect
multiple bit flips

Connector Fault

arbitrary

one component only

message omissions
on a channel

Fig. 8. Examples of Fault Patterns

a one-to-one mapping between jobs and components
as in federated systems, this differentiation is obsolete.
However, in the context of an integrated architecture
such a differentiation is important to determine whether
a component internal fault is a job inherent fault.

V. DETERMINING THE MAINTENANCE ACTION

The introduced maintenance-oriented fault model
serves as the basis for the assessment process as part
of the DECOS integrated diagnostic architecture as
indicated in Figure 1. Based on the classification of
the experienced faults into the derived fault classes a
particular maintenance action can be performed by the
service technician.

A. Operation on the Distributed State

The pivotal strategy of the DECOS diagnostic archi-
tecture is the establishment of a holistic view on the
system by operating on thedistributed stateestablished
via the underlying core services. In combination with the
strong fault isolation core service (C3 in Figure 1) and
the encapsulation high-level service, this strategy allows
to trace correlated component or job failures back to the
FRU responsible for the experienced system behavior.

Whenever a fault affects one or more constituting parts
of the distributed system, a change of state can occur
that leads to an unintended state denoted as an error [6].
Depending on the type of fault (e.g., component exter-
nal fault, job inherent fault), the unintended state will
exhibit a characteristic manifestation in time, value and
space. To capture the characteristics of the fault-induced
distributed state changes, we introduce the concept of a
fault pattern. A fault pattern is the set of state variables
that has been identified as subject to fault-induced state
changes along with corresponding properties in value,
space, and time. Different types of faults show different
fault patterns on the distributed state (see Figure 8 for
examples).

In the diagnostic architecture so-calledOut-of-Norm
Assertions (ONAs)[69] are deployed that are checked
against the distributed state established by the use of
a sparse time base [70]. We define an Out-of-Norm

Assertion (ONA) as a predicate on the distributed system
state that encodes a fault pattern in the value, time
and space domain. Out-of-Norm Assertions (ONAs) are
deterministically triggered, whenever all symptoms of a
particular fault pattern are detected on the distributed
state. Asymptomis a condition on a set of interface state
variables of a particular component that is monitored
to detect deviations from the Linking Interface (LIF)
specification [71]. An ONA will likely be composed of
more than one symptom, each operating on the interface
state of different components.

B. Deriving Fault Patterns

Typically, defective control units are returned to the
OEM for warranty analysis [72]. Although this off-line
analysis is not in the scope of the DECOS integrated
diagnostic architecture, the information gained through
off-line analysis has a major impact on the design of the
fault patterns. An optimization of the patterns in order to
support the identification of those faults that have been
identified to cause the majority of failures is of para-
mount importance to the effectiveness of the deployed
diagnostic mechanisms. Studies of faults affecting ECUs
used in automotive applications underpin the so-called
Pareto-principle, i.e. a phenomenon that can have many
theoretical causes has in reality only a few [16].

In order to derive the fault patterns for prevalent fault
types causing the majority of system failures, a thorough
analysis of field data (provided by industry) and fault
injection techniques is necessary. Statistics on the types
of faults affecting products in operation will help to
derive those fault patterns that will help to identify the
faults that will most likely affect the system (e.g., car,
aircraft) during operation.

C. Determining the Replacement Strategy

The introduced fault model serves as the basis for the
assessment process. The diagnostic subsystem executes
algorithms on the gathered diagnostic information in
order to assess the condition of each FRU. The evaluation
process performed by the diagnostic DAS is illustrated
in Figure 9. The evaluation process is based on a
consistent notion of state, which is provided through the
action latticeof the sparse time base established by the
core services of the integrated architecture. The arrows
in Figure 9 indicate the LRU assessment trajectories.
At first both arrows show conformance with the LRU
specification. As time progresses arrowA exhibits an
increasing confidence for a violation of the specification,
while arrowB indicates a LRU behavior in accordance
with the specified service.

12

Time

Action Lattice

An
om
al
ie
s

..
.

..
.

..
.

ONA
Assessment
Trajectories
(A,B)

A B

Fig. 9. LRU Assessment Process

The introduced integrated architecture provides a finer
granularity of diagnostic information than federated sys-
tems. The assessment process exploits this knowledge
about the functional and physical structure of the in-
tegrated architecture. The decomposition of the overall
system into DASs with respective jobs is a key element
for a more precise differentiation of experienced faults.
By including the three dimensions of time, value, and
space into the judgment process, a discrimination into
the fault classes identified by the maintenance-oriented
fault model is possible.

For instance, consider the system depicted in Fig-
ure 10. In case a job inherent fault hits the jobsA1, A2,
andA3 of the non safety-critical DASA, the fault effects
only the DASA, since the error containment mechanisms
of the architecture ensure that this fault cannot propagate
to other DASs. In contrast, in case an internal component
fault hits a component hosting multiple jobs of different
DASs, it is very likely that the impact of this fault is
not limited by DAS borders. An internal component
hardware fault will cause multiple jobs hosted on one
component to fail (e.g., the jobsA3, C1, C2, andS2 on
component 2 in Figure 10).

The recognition of correlated job failures is also
important in the detection of faults affecting architecture
supported fault-tolerance mechanisms, such as Triple
Modular Redundancy (TMR) mechanisms. This fault-
tolerance mechanism is characterized by the replication
of identical jobs on three different components in order
to tolerate single hardware faults. In case the jobsS1, S2,
andS3 are forming a TMR system, the spatial dimension
of an ONA covering deviations in the services of the
three replicas spreads across components1, 2, and 3
(since a component is the FCR with respect to hardware
faults). In case one of the replicated safety-critical jobs
fails, an analysis if correlated failures of jobs of other

Jobs of the safety-
critical DAS

Jobs of the non
safety-critical DASs

Component 1 Component 2

Component 3 Component 4

TIME

SPACE

VALUE

Fig. 10. Judgment According to the Three Dimensions: Time, Value
and Space

DAS executed at the same time on the same component
exist will supply evidence whether a an internal hardware
fault effects the component.

In addition, for the differentiation whether transient
failures are caused by environmental influences or inter-
nal faults, techniques such as theα-count mechanisms
can be utilized [33]. By interpreting the detected failures
in the time and space domain, a determination between
external and internal component faults is possible, since
transient component internal faults tend to occur at a
higher rate compared to transient component external
faults and occur repeatedly at the same location [24].
This discrimination is of paramount importance since
internal component faults can only be eliminated by
repair, while a replacement of a component due to an
external component fault will only increase the fault-
not-found ratio (i.e. the component will be retested OK
at bench tests).

As a result of the diagnostic judgement process, atrust
levelfor each FRU of the system is determined that forms
the basis for decision-making process of the maintenance
engineer. Figure 11 summarizes the maintenance actions
for each fault class:

• Component External. In the proposed model we
consider the persistence of external faults as tran-
sient. Consequently, in case of component external
faults no maintenance action has be to taken.

• Component Borderline. Borderline faults require
a closer inspection by the service technicians. Con-
nector problems, are difficult to trace, since the
inspection itself can be the corrective action [44].
In case of connectors showing wearout phenomena
such as fretting or corrosion, a replacement will be
necessary.

• Component Internal/Job External Component in-
ternal faults such as a crack in the PCB or a
defective processor require the replacement of the
component (i.e. the ECU in the automotive domain
or a Line Replaceable Module (LRM) in avionics).

• Job Borderline. Job borderline faults require the

13

FAULT

COMPONENT
EXTERNAL

COMPONENT
BORDERLINE

Hardware

JOB
EXTERNAL

Connector
Hardware

Permanent Transient Permanent

TransientTransient/
Permanent

Transient/
Permanent

PERSISTENCE:

DOMAIN:

COMPONENT
BOUNDARY:

COMPONENT
INTERNAL

JOB
BORDERLINE

Permanent

JOB
INHERENT

Permanent

PERCEPTION:

HardwareSoftware
ConfigurationSoftware Sensor/Actuator

Hardware

Permanent

JOB
BOUNDARY:

TransientTransient/
Permanent

Transient/
Permanent

MAINTENANCE
ACTION:

Update
Software

Sensor/Act.
Inspection/

Replacement

Update
Software

Component
Replacement No Action

Connector
Inspection/

Replacement

Fig. 11. Determining the Maintenance Action for each Fault Class

update of the configuration data of the virtual net-
work service of the DAS.

• Job Inherent. Sensor/actuator faults require further
inspection by the service technician in order to
decide whether part replacement due to wear-out
(e.g., change of brake pads) or a replacement of the
transducer is necessary.
Software faults identified by the diagnostic system
requires an update of the job software in case this
identification has also been acknowledged by the
OEM and a corrected version of the job has been
distributed to the service station. In case no update
is available, this field data will be forwarded to the
OEM in order to allow a correlation of the field data
provided by a representative number of products to
allow the identification of possible software design
faults (i.e. fleet analysis as engineering feedback).

VI. CONCLUSION

Existing fault models developed for the purpose of
fault-tolerant system design cannot be used unmodified
for maintenance-oriented diagnosis, since maintenance
requires a mapping of the experienced failures to field re-
placeable units, while fault-tolerance aims at keeping the
system operational despite the occurrence of failures. In
order to tackle today’s prevalent diagnostic problems, we
propose a maintenance-oriented fault model tailored to
the emerging diagnostic needs of maintenance engineers
and service technicians. The model synthesizes well-
established concepts of distributed embedded real-time
systems in order to form a conceptual basis and a founda-
tion for solutions to prevalent diagnostic problems such
as the fault-not-found phenomenon industry is currently
facing. The classification can easily be mapped onto the
field replaceable units of today’s distributed embedded
infrastructure as deployed in the automotive and avionic

domain. The model distinguishes fault classes with re-
spect to hardware and software faults and is thus in
particular suitable for emerging integrated architectures.

ACKNOWLEDGMENTS

This work has been supported in part by the European
IST project ARTIST2 under project No. IST-004527 and
the European IST project DECOS under project No. IST-
511764.

REFERENCES

[1] M. Mateos, P. Robin, S. Sauvage, V. Joloboff, G. Madhusudan,
and Y. Bennani. Environment for evolutionary automotive
diagnosis. InConvergence International Congress & Exposition
On Transportation Electronics, Detroit, MI, USA, October
2002. SAE.

[2] R. Tappe and D. Ehrhardt. Dynamic tests in complex systems.
In Proceedings of the International Test Conference, pages 609–
614. IEEE, 2001.

[3] M. Lorell, J. Lowell, M. Kennedy, and H.P. Levaux.Cheaper,
Faster, Better? Commercial Approaches to Weapons Acquisi-
tion. RAND Corporation, 2000.

[4] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a
federated to an integrated architecture for dependable embedded
real-time systems. Technical Report 22, Technische Universität
Wien, Institut f̈ur Technische Informatik, Treitlstr. 1-3/182-1,
1040 Vienna, Austria, 2004.

[5] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[6] J.C. Laprie. Dependability: Basic Concepts and Terminology.
Springer Verlag, Vienna, Austria, 1992.

[7] D. Powell. Failure mode assumptions and assumption coverage.
In Proceedings of the 22nd IEEE Annual International Sympo-
sium on Fault-Tolerant Computing (FTCS-22), pages 386–395,
Boston, USA, July 1992.

[8] M. Hsueh, T.K. Tsai, and R.K. Iyer. Fault injection techniques
and tools.IEEE Computer, 30(4):75–82, April 1997.

[9] C.J. Walter, P. Lincoln, and N. Suri. Formally verified on-
line diagnosis. IEEE Transactions on Software Engineering,
23(11):684–721, November 1997.

[10] Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, Mary-
land 21401. ARINC Specification 624: Design Guidance for
Onboard Maintenance System, August 1993.

[11] J. Rushby. Partitioning for avionics architectures: Requirements,
mechanisms, and assurance. NASA Contractor Report CR-
1999-209347, NASA Langley Research Center, June 1999. Also
to be issued by the FAA.

[12] P. Peti, R. Obermaisser, and H. Kopetz. An integrated diagnostic
architecture. Research report, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040
Vienna, Austria, 2004.

[13] R. Obermaisser, P. Peti, and H. Kopetz. Virtual networks
in an integrated time-triggered architecture. Research report,
Technische Universität Wien, Institut f̈ur Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

[14] J. Gait. A probe effect in concurrent programs.Software
Practice and Experience, 16(3):225–233, March 1986.

[15] A. Avizienis, J.C. Laprie, and B. Randell. Fundamental con-
cepts of dependability. Research Report 01-145, LAAS-CNRS,
Toulouse, France, April 2001.

14

[16] B. Pauli, A. Meyna, and P. Heitmann. Reliability of electronic
components and control units in motor vehicle applications.
In VDI Berichte 1415, Electronic Systems for Vehicles, pages
1009–1024. Verein Deutscher Ingenieure, 1998.

[17] H. Kopetz. Real-Time Systems, Design Principles for Distrib-
uted Embedded Applications. Kluwer Academic Publishers,
Boston, Dordrecht, London, 1997.

[18] J.H. Lala and R.E. Harper. Architectural principles for safety-
critical real-time applications.Proceedings of the IEEE, 82:25–
40, January 1994.

[19] H. Kim, A.L. White, and K.G. Shin. Effects of electromagnetic
interference on controller-computer upsets and system stability.
IEEE Transactions on Control Systems Technology, 8(2):351–
357, March 2000.

[20] J. Swingler, J.W. McBride, and C. Maul. Degradation of road
tested automotive connectors.IEEE Transactions on Compo-
nents and Packaging Technologies, 23(1):157–164, March 2000.

[21] N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system.IEEE Transactions on
Software Engineering, 26(8):797–814, August 2000.

[22] S. Mishra, M. Pecht, and D.L. Goodman. In-situ sensors for
product reliability monitoring. InProceedings of SPIE, volume
4755, pages 10–19, 2002.

[23] M. Pecht and V. Ramappan. Are components still the major
problem: a review of electronic system and device field failure
returns. IEEE Transactions on Components, Hybrids, and
Manufacturing Technology, 15(6):1160–1164, December 1992.

[24] C. Constantinescu. Impact of deep submicron technology on
dependability of VLSI circuits. InProceedings of the Interna-
tional Conference on Dependable Systems and Networks, pages
205–209. IEEE, 2002.

[25] L. Lev and P. Chao. Down to the wire. Technical report,
Cadence Design Systems, Inc., San Jose, CA, USA, 2002.

[26] DoD. Military Handbook, Electronic Reliability Design Hand-
book (MIL-HDBK-338). US Department of Defense, 1998.

[27] M. Pecht. Electronic reliability engineering in the 21st century.
In Proceedings of 2001 International Symposium on Electronic
Materials and Packaging, pages 1–7. IEEE, 2001.

[28] B. Pauli and A. Meyna. Ein praxisorientierter Ansatz zur Bes-
timmung von komulierten und durchschnittlichen Ausfallraten.
Automobiltechnische Zeitschrift (ATZ), pages 382–386, 1998.

[29] J. Wilde, W. Wondrak, and W. Senske. Reliability requirements
for microtechnologies used in automotive applications. In
Proceedings of the Congress for Microsystems and Precision
Engineering, MicroEngineering 99, Stuttgart, Germany, Octo-
ber 1999. Stuttgarter Messe- und Kongressgesellschaft GmbH.

[30] IEEE standard methodology for reliability prediction and as-
sessment for electronic systems and equipment, January 1999.
IEEE Std 1413-1998.

[31] A. Ramakrishnan et. al. The Avionics Handbook, chapter
Electronic Hardware Reliability. CRC Press LCC, 2001.

[32] J.M. Wetzer, G.J. Cliteur, W.R. Rutgers, and H.F.A. Verhaart.
Diagnostic- and condition assessment-techniques for condition
based maintenance. InProceedings of the 2000 Annual Report
Conference on Electrical Insulation and Dielectric Phenomena,
volume 1, pages 47–51, 2000.

[33] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and
F. Grandoni. Discriminating fault rate and persistency to
improve fault treatment. InProceedings of The Twenty-Seventh
Annual International Symposium on Fault-Tolerant Computing
(FTCS’97), pages 354–362, Washington - Brussels - Tokyo,
June 1997. IEEE.

[34] G. Heiner and T. Thurner. Time-triggered architecture for
safety-related distributed real-time systems in transportation
systems. InProceedings of the Twenty-Eighth Annual Inter-

national Symposium on Fault-Tolerant Computing, pages 402–
407, June 1998.

[35] International Standardization Organisation, ISO 7637.Road ve-
hicles – Electrical disturbances from conduction and coupling,
1995.

[36] A. Schedl. The short-term stability of crystal oscillators:
Experimental results. Research Report 1/1995, Technische
Universiẗat Wien, Institut f̈ur Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 1995.

[37] P. Gil, J. Arlat, H. Madeira, Y. Crouzet, T. Jarboui, K. Kanoun,
T. Marteau, J. Duraes, M. Vieira, D. Gil, J.C. Baraza, and
J. Gracia. Fault Representativeness. LAAS-CNRS, Toulouse,
France, 2002. Deliverable (ETIE2) of the European Project
Dependability Benchmarking Dbench (IST-2000-25425).

[38] W. Wondrak. Physical limits and lifetime limitations of
semiconductor devices at high temperatures.Microelectronics
Reliability, 39:1113–1120, 1999.

[39] D. Galler and G. Slenski. Causes of aircraft electrical failures.
Aerospace and Electronic Systems Magazine, 6(8):3–8, August
1991.

[40] S. Sullivan and G. Slenski. Managing electrical connection
systems and wire integrity on legacy aerospace vehicles. In
Proceedings of the FAA Principal Inspectors and Engineers
Workshop, Seattle, USA, 2001.

[41] US AirForce. Aircraft mishap investigation handbook for elec-
tronic hardware. Technical Report WL-TR-95-4004, Materials
Directorate, Wright Laboratory, Air Force Material Command,
January 1995.

[42] J.W. McBride. Electrical contact and connectors in automotive
systems. InProceedings of the IEE Colloquium on Connectors
on Vehicles, pages 3/1–3/7, November 1993.

[43] P.N. Tanner. Automotive connectors. InProceedings of the
IEE Colloquium on Connectors on Vehicles, pages 6/1–6/10,
November 1993.

[44] K. Kimseng, M. Hoit, N. Tiwari, and M. Pecht. Physics-of-
failure assessment of a cruise control module.Microelectronics
Reliability, 39:1423–1444, 1999.

[45] E. Normand. Single-event effects in avionics.IEEE Transac-
tions on Nuclear Science, 43(2):461–474, April 1996.

[46] E. Normand. Single event upset at ground level.IEEE
Transactions on Nuclear Science, 43(6):2742–2750, December
1996.

[47] A.S. Podgorski. Lightning standards for aircraft protection. In
Proceedings of the IEEE International Symposium on Electro-
magnetic Compatibility, pages 218–223, August 1990.

[48] I.E. Noble. Electromagnetic compatibility in the automotive en-
vironment.Science, Measurement and Technology, 141(4):252–
258, July 1994.

[49] I. Berger. Can you trust your car?IEEE Spectrum, 39(4):40–45,
April 2002.

[50] I.E. Noble. Emc and the automotive industry.Electronics
& Communication Engineering Journal, 4(5):263–271, October
1992.

[51] G. McCall, D. Newman, and D. Ward. Guidance on automotive
software development in relationship to emc. InProceedings
of the IEE Colloquium on Electomagnetic Compatibility of
Software, pages 8/1–8/5, November 1998.

[52] M.J. Pont, R. Kureemun, H.L.R. Ong, and W. Peasgood.
Increasing the reliability of embedded automotive applications
in the presence of emi: a pilot study. InProceedings of the
IEE Seminar on Electromagnetic Compatibility for Automotive
Electronics, pages 4/1–4/4, September 1999.

[53] W.J. Fleming. Overview of automotive sensors.IEEE Sensors
Journal, 1(4):296–308, December 2001.

[54] W. Wondrak, A. Boos, and R. Constapel. Design for reliability

15

in automotive electronics. InProceedings of the Microtec 2000,
Hannover, EXPO, July 2000.

[55] C. Furse and R. Haupt. Down to the wire [aircraft wiring].
IEEE Spectrum, 38(2):34–39, February 2001.

[56] J. Gray. Why do computers stop and what can be done about
it? In Proceedings of the 5th Symposium on Reliablity in
Distributed Software and Database Systems, January 1986.

[57] D. Wybo and D. Putti. A qualitative analysis of automatic
code generation tools for automotive powertrain applications.
In Proceedings of the 1999 IEEE International Symposium
on Computer Aided Control System Design, pages 225–230,
Hawaii, USA, August 1999.

[58] MISRA. Guidelines for the use of the C language in vehicle
based software. The Motor Industry Software Reliability
Association (MISRA), April 1998.

[59] J.P. Weber. Integrated diagnostics for software. InProceedings
of the IEEE 1992 National Aerospace and Electronics Confer-
ence, volume 2, pages 565–571, May 1992.

[60] R.A. George and C.J. Wang. Vehicle E/E system integrity from
concept to customer. InConvergence International Congress &
Exposition On Transportation Electronics, Detroit, MI, USA,
October 2002. SAE.

[61] E.N. Adams. Optimizing preventive service of software prod-
ucts. IBM Journal of Research and Development, 28(1):2–14,
1984.

[62] Robert Bosch GmbH, editor. Autoelektrik Autoelektronik.
Vieweg Verlag, Braunschweig/Wiesbaden, 4th edition, 2002.

[63] I. Moir and A. Seabridge.Civil Avionics Systems. Professional
Engineering Publishing, London, UK, 2003.

[64] M. Parsons. Design and manufacture of automotive pressure
sensors.Sensors, April 2001.

[65] B. Peischl and F. Wotawa. Model-based diagnosis or reasoning
from first principles. IEEE Intelligent Systems, 18(3):32–37,
May 2003.

[66] M. Nyberg. Model-based diagnosis of an automotive engine
using several types of fault models.IEEE Transactions on
Control Systems Technology, 10(5):679–689, September 2002.

[67] S. Poledna. TTP-Tools – The tool set of the Time-Triggered
Architecture. InProceedings of the Monterey Workshop, Baden,
Austria, October 2004.

[68] L. Kleinrock. Queuing Systems Volume I: Theory. John Wiley
and Sons, New York, 1975.

[69] P. Peti, R. Obermaisser, and H. Kopetz. Out-of-norm assertions.
Research Report 42/2004, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna,
Austria, 2004.

[70] H. Kopetz. Sparse time versus dense time in distributed real-
time systems. InProceedings of 12th International Conference
on Distributed Computing Systems, Japan, June 1992.

[71] H. Kopetz and N. Suri. Compositional design of RT systems:
A conceptual basis for specification of linking interfaces. In
Proceedings of Sixth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 51–60, May
2003.

[72] S. Amberkar and B. Murray. Diagnostic strategies for advanced
automotive systems. InConvergence International Congress &
Exposition On Transportation Electronics, Detroit, MI, USA,
October 2002. SAE.

