
1 INTRODUCTION

Milling is the machining process of using rotary
cutters to remove material from a workpiece
progressing (or feeding) in a direction and an angle
w.r.t axis of the tool (García-Nieto 2015). It covers a
wide variety of different operations and machines
varying from small individual parts to large, heavy-
duty gang milling operations. Due to the up-
streaming property of the drilling process, a smooth
tool surface always implies a high quality of
production,otherwise, the products are unacceptable.
For instance, a dull tool may tear the surface and
decrease the fatigue resistance of the workpiece. A
worn tool can cause more friction which will
increase the cutting temperatures and lead to
resource waste. Tool wear monitoring and prediction
has attracted a considerable amount of research
attention in the past decades, as tool wear has a great
effect on the final products as previously mentioned.
Therefore, efficient solutions should be proposed to
solve this problem. There are many types of tool
wear, for example, rounding wear of the cutting
edge, crater wear on the rake face, friction caused
flank tool wear and so forth. Several parameters for
causing wear have been investigated, e.g., the
cutting speed, feeding rates, cutting depths.

In recent years, plenty of methods have been
proposed to help to produce high quality products.
Generally, these methods are mainly using statistic
techniques, signal-processing methods, neural
networks and so on. The representative methods
include: Ai proposed to use acoustic spectrum (Ai et

al. 2012) whereas De Jesu used current signal to
analyze the tool wear condition (De Jesu et al.
2003). (Ghosh etal.2007) and (Palanisamy et
al.2008) proposed to use Feed-Forward Neural
Networks (FFNN) for monitoring tool wear. On the
other hand, (Mosallam et al.2014) introduced a
method for trends extraction from multidimensional
sensory data that considers time. This method is
based on extracting successive features from
machinery sensory signals. According to the
literature, the aforementioned methods work fine for
the tool-wear issue. However, the the problem is that
part of the methods only focused on single feature
and ignored other ones like spindle or table vibration
which lead to unreliable monitoring results while
others did not consider the time variation issue. In
fact, the machining process is a time series
procedure as the post tool condition happens based
on its prior states. In contrast, in this paper we
regard tool wear changing process as a time series
procedure generating sequential data points in one
time interval. At each time step t of the interval, one
data point will be generated which may depend on
its previous 1t , 2t , or nt  data points.

To achieve a sustainable manufacturing, we
propose in this paper a novel method for predicting
milling-tool healthy states based on echo-state
networks (ESN). These are a new type of recurrent
neural networks that have the ability to memorize.
The major advantage of ESN is the simplicity of
their implementation and training. We used
statistical analysis techniques for extracting mutil-
sensor features of machining tool. Since cutting

Milling-Tool Wear-Condition Prediction with Statistic Analysis and
Echo-State Networks

Guodong Wang & Radu Grosu
Vienna University of Technology, Vienna, Austria

ABSTRACT: Tool wear is the most commonly observed and unavoidable issue in metal milling. The worn or
damaged cutting tools will cause materials loss and machines shut-down. To tackle this problem, we propose
a new method for predicting the wear condition of end-milling tool. First, we adopt statistic-analysis
techniques to analyze the collected data. Second, we select interesting features based on Pearson-correlation
coefficient (PCC). Finally, those features are applied as inputs to the so called echo-state network to predict
subsequent tool wear condition. The experimental results and theoretical analysis both demonstrate that the
proposed method performs better than naive feed-forward neural networks (FFNN) and time-series neural
networks (TSNN).



tools are gradually changing over time, ESN is
adopted as the predictor of next healthy state.

The main contributions of this paper can be
briefly summarized as follows:
(1) A tool wear prediction method is proposed based

on statistic analysis techniques and echo state
network.

(2) A numerical comparison with existing methods
(TSNN and FFNN) is provided, showing the
prediction accuracy of our technique.
The rest of the paper is organized as follows. In

section 2, we introduce the experimental data set and
the signals-collection setup. In section 3, we propose
our main algorithm for tool-wear-states prediction.
In section 4, we introduce the configuration of ESN
and present the simulation results. We end the paper
with concluding remarks and research directions.

2 EXPERIMENT DATA SET AND SYSTEM
STRUCTURE

One specific industrial milling machine is used for
the experiments. The machine operates to get an
experimental data-set under various conditions. To
collect the machining-processes-generated data,
three different types of sensors are installed around
the tool at several positions. Those sensors are
acoustic emission, vibration and current sensors.

The generated data is organized in a 1671
matlab struct array with fields as shown in (Goebel
1996). The experiment is divided into 16 different
study cases. Each case with various number of runs.
Tool flank wear is measured at irregular time
intervals. For each measurement, one has to stop the
whole machining process.

We acquired the experiment result data set
from NASA data repository (Agogino & Goebel
2007). (Goebel 1996) gave the concrete introduction
of the experiment setup. It encompasses the
characteristics of the used physical devices, for
instance, the size of workpieces, types of materials
and inserts. It also describes the various
experimental conditions e.g. position of installed
sensors, feeds rates, cutting speed and depths. The
collected signals from all sensors are preprocessed
before entering the industrial computer. The
preprocess consists on amplifying and filtering those
data, then feeding processed data into two RMS
devices. The current signal of spindle motor is
directly fed into computer without further RMS
process.

The major reason for using device RMS is that
it can smooth the signal and make it more accessible
for signal processing. Moreover, RMS is
proportional to the energy contents of the signal
(Goebel 1996), according to the Formula 1. The
whole process is depicted in Figure 1. In Formula 1,

T 8.00 ms, sampling rate is 250HZ, and )(xf is
the signal function.

(1)

Figure 1. Experimental setup.

3 THE PROPOSED METHOD

In this section, we first introduce a way to select
appropriate features for the data set. Then give a
brief introduce of the ESN model and its key global
parameters (spectral radius, sparsity of reservoir,
size of ESN, input scaling and leaking rate). Finally,
the specific steps for implementing the proposed
method is listed out.

3.1 Features extraction and selection
The collected raw data always contains noise,
abnormal data points and other unexpected
problems. To obtain a good data set for the analysis,
the most valuable and decision-relevant features
should be extracted and selected. Based on studies
(Dong etal. 2006) (Wang et al. 2013.), we consider
the following features extracted from raw data
which are listed in Table 1. CF is the abbreviation of
crest factor, P/AR is the peak to average ratio and
skewness. Different features represent various
information about tool heath states, for instance,
RMS is the measure of a varying quantity which is
also related to the energy of signals. Kurtosis
indicates the plus of signals and Skewness
characterizes each degree of asymmetry of the
distribution around its mean. Naturally, not all
features are valuable, but it is hard to decide which
one is more sensitive to the tool wear. A good
feature should present consistent trends with defect
propagation (Wang et al. 2013.).

In this paper, we use PCC, which measures the
independence of two or more random variables, to
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rank features. The way of computing PCC is shown
in Formula 2.

Table 1. Summary of extracted features

Features Expression

Mean value

RMS

Variance

Maximum

CF

Kurtosis

P/AR

Skewness

(2)

3.2 ESN model
ESN is a new typology of recurrent neural network
(RNN), first proposed by (Jaeger & Haas 2004). It
has a naive way of generating the neural network
and uses a linear regression algorithm to train the
network. Recently, ESN has attracted a big amount
of research efforts. It has plenty of successful
applications, especially in dynamic pattern
recognition, robot control and time series prediction
(Jaeger & Haas 2004) (Shi & Han 2007). The
typical ESN follows the structure depicted in Figure
2. It has three different layers which are the input
layer, the reservoir and the output layer. For a given
machining system, the input is:

(3)

where T is the running time of milling system, aC ,
dC , tV , sV , tA and sA are AC/DC motor

current, table/spindle vibration and acoustic
emission from table/spindle, respectively. A target
output yNtarget RVBny )( is given, which is
known as flank wear, and the actual output will
be )(nvb , vbN is the output dimensions, here

1vbN . inW is the weight matrix from input to
reservoir and W is the randomly generated

connection matrix from reservoir to reservoir.
outout RW  is the connection weight matrix from

reservoir to output.

Figure 2. Basic ESN structure.

In the initial phase, ESN randomly generates a
hidden-layer connection which is called a reservoir.
The input-to-reservoir connection-matrix and
reservoir inner-connection will be randomly
generated and kept fixed during the training phase.

Generally, ESNs are applied to supervised
temporal machine learning tasks. To train the
ESN, )(ny should close enough to targety according to
desired accuracy. Hence, we can minimize the error
measurement ),( targetvbvbE , typically by using the
Root-Mean-Squired-Error (RMSE) to achieve above
goal, the formula is:

(4)

Once the input is fed into ESN, the reservoir state
)(nx will be updated with following formulas:

(5)

)(~)1()1()( nxanxnx   (6)

Where f is the activation function and  is the
leaking rate which is used as the memory loss factor
of ESN for the past states. Here, we choose a
sigmoid model as the activation function. The output
layer is defined as a linear combination of the
reservoir states and inputs:

(7)

Where :][:; stands for column vector (or matrix)
concatenation, g is the output activation function.
The computing performance of an ESN depends on
the following key parameters: The spectral radius,
which is used for generating the echo state and one
needs to make sure that the maximum eigenvalue of
spectral radius is always less than 1. The sparsity of
reservoir, which decides the mount of connection
among neurons. The size of ESN, which is the
amount of neurons embedded in the reservoir.
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Generally, with a bigger number of neurons, an ESN
performs better while it also increase the complexity
of ESN at the same time. Input-scaling maps the
input into the range of neuron activation function.
Leaking-rate can be regarded as the speed of the
update dynamics of the reservoir discretized in time
(Lukosevicius 2012).

In summary, compared with classical RNNs, the
advantages of ESNs are:
(1) Randomly generated reservoir connections

support rich-dynamics internal states for the
prediction of the output.

(2) Randomly generated connection matrix from
input to reservoir and from reservoir to
reservoir, which are kept fixed during training
process, overcomes the low computing
efficiency issue of RNN.

(3) For complex non-linear problems, the linear
combination of reservoir states can always get
accurate solutions.

3.3 Specific steps for implementation
In this section, we introduce our method for tool
wear prediction. The main idea is to use statistical
techniques for extracting useful information and
deploying ESN to estimate tool healthy states. The
proposed method is summarized as follows:
Step 1: Collect raw data set from sensors nU and

make appropriate configuration for ESN,
inW and for W .

Step 2: Clean the data set: remove and make up the
missed or abnormal value.

Step 3: Based on the cleaned data from second step,
use statistic analysis techniques to extract the
most valuable and relevant information for
decision: we adopt 8 different features.

Step 4: Use Pearson correlation coefficient (PCC) to
rank those features for each type of signal.

Step 5: Use a part of the processed data as inputs to
train ESN: one can manually get the
parameters for ESN.

Step 6: Apply the rest of the data as inputs to ESN
and predict the coming states.

Step 7: Return tool wear condition VB .

4 EXPERIMENTS

4.1 Configuration
According to the description of the experimental-
data set, we consider one running case as one time
series process. For each case, one specific ESN is
designed to predict the tool wear condition. The
configuration of each ESN is manually acquired. Six
different running cases are used to train ESN and
validate the accuracy of the prediction. The selected
data set are labeled as case 1, case 2, case 3, case 11,
case 12 and case 13, respectively.

(8)

To evaluate the performance of the proposed
algorithm, we also compared the simulation results
obtained through ESN, FFNN and TSNN methods.
In the experiments, the flank wearVB is measured as
a generally accepted parameter for evaluating the
tool wear condition. VB is observed during the
experiments and measured as the distance from the
cutting edge to the end of the abrasive wear on the
flank face of the tool. The measurement is Formula
8.

4.2 Simulation results
To reduce the dimension of inputs, PCC is applied
for ranking features, the one with the top score is
selected for future prediction. The analysis results
for different study cases are listed in Table 2.
Because of the limitation of pages, we only list out
part of PCC ranking results of 6 study cases. We
implement the proposed algorithm in MATLAB, for
all simulations, each running case uses same training
and validation data set.

Table 2. PCC ranking.
smcAC smcDC Vib_table Vib_spindle AE_table AE_spindle

CASE 3
0.815 0.9467 -0.8006 -0.4802 0.9547 0.8333
0.9514 0.9521 -0.826 -0.4687 0.9541 0.826
0.9574 0.9145 -0.8089 0.4894 0.898 0.6431
0.9232 0.9466 -0.86 0.7322 0.9228 0.6618
0.03612 0.3632 -0.7639 0.7641 0.1259 -0.1147
-0.08484 -0.4043 0.7817 0.7425 -0.0007 0.4092
-0.9385 0.4407 -0.806 0.7633 0.2067 -0.08621
0.8161 0.3082 -0.7845 0.7389 -0.8739 -0.8058

CASE 11
0.8195 0.9481 -0.8054 -0.7834 0.9682 0.8716
0.9544 0.9542 -0.8141 -0.7414 0.9716 0.8716
0.9535 0.9533 -0.7336 0.2935 0.9548 0.578
0.9594 0.9624 -0.7926 0.6211 0.9749 0.8057
0.4876 0.5018 -0.1323 0.6659 0.9404 0.6712
-0.1635 0.2024 0.5981 0.6964 0.7098 0.7369
-0.9567 0.5915 -0.2627 0.6624 0.9491 0.6978
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0.8574 -0.1603 -0.4359 0.7411 -0.8573 0.4807

The simulation results are listed in Table 3.
All study cases have the same simulation process
but with different configuration. The overall
simulation results show that ESN always performs
better in terms of prediction accuracy.

Table 3. The simulation results

Case ESN TSNN FFNN
1 4.8e-4 1.5e-3 1.5e-3
2 9.0e-5 3.7e-4 2.3e-3
3 7.8e-4 1.8e-3 6.0e-3
11 9.7e-4 3.0e-3 3.9e-3
12 4.8e-4 1.8e-3 2.2e-3
13 1.9e-3 2.5e-3 5.6e-3

5 CONCLUSION

This paper introduces a new technique for
predicting the tool wear states based on statistic
analysis and echo-state networks (ESN). First, the
statistic analysis is used for selecting valuable
features of inputs, then the selected features are fed
into ESN to train the neural network and predict
subsequent tool- wear states. The simulation
results show that our method performs better than
TSNN and FFNN.

To the best of our knowledge, this is the first
time ESNs were used for milling-tool-wear
prediction. As the cutting process is essentially a
time series process, so ESNs have a great potential
in the predictive-maintenance problem of Cyber-
Physical Production Systems (CPPS). Therefore,
our future research will focus on adaptive ESNs
for CPPS.
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