
Towards a New Way of Parameterization�

Radu Grosu Dieter Nazareth

Technische Universit�at M�unchen, Fakult�at f�ur Informatik

D-80290 M�unchen, Germany

E{Mail: fgrosu,nazarethg@informatik.tu-muenchen.de

Abstract

Classical approaches to parameterization in axiomatic speci�cation languages require the user to explic-

itly handle speci�cation instantiation. This often makes speci�cations less readable and manageable. We

therefore present a new parameterization mechanism which allows implicit instantiation. However, since

this mechanism is less powerful as the �rst one we show how to combine them to achieve both elegance

and power. We included both mechanisms in the speci�cation language Spectrum.

1 Introduction

Parameterization has a long history and was from the very beginning recognized as one of the most im-
portant structuring mechanisms in speci�cation construction. Essentially, parameterization for speci�cations
corresponds to �{abstraction for functions: it allows to designate some parts of a speci�cation as formal pa-
rameters. The speci�cation abstraction obtained is called parameterized and can subsequently be instantiated
with actual speci�cations \�tting" the formal ones.

Parameterized speci�cations were �rst used in the speci�cation language CLEAR [2]. Since then, plenty
of approaches were developed with di�erent semantics or abstraction and instantiation mechanisms. Among
them, probably best known are the CLEAR{style parameterized speci�cations, the ASL{style parameterized
speci�cations [17], the ACT-ONE{style parameterized speci�cations [4, 5] and the (Extended) ML functor
speci�cations [16]1. In all these approaches the user must explicitly deal with speci�cation instantiation. This
makes the speci�cation language very powerful but also more awkward to use.

A very interesting attitude was adopted in the functional language ML [10] where the formal parameters
are restricted to sorts. This restriction decreases the abstraction level to sort abstraction but it enables the
de�nition of a type inference algorithm. As a consequence the user is not constrained anymore to deal explicitly
with sort instantiation. This is performed implicitly by the system. This kind of parameterization is known
as ML-style parametric polymorphism. It is easy to use but also less powerful. Therefore ML also provides
for functor declarations.

A signi�cant improvement of the implicit parameterization mechanism was done by introducing type classes
in the language Haskell (see [11]). Sort variables belonging to a class are restricted to range only over sorts
owning the functions stated in the class declaration. From an algebraic point of view, class declarations can be
understood as formal parameter speci�cations which are restricted to have only one sort of interest (i.e. one
sort variable) and no axioms. In other words type classes are a step towards speci�cation abstraction which
further maintains the pleasant features of an implicit parameterization mechanism. They also give an elegant
solution to the overloading problem of ML. However, Haskell type classes are not as powerful as ML functors.
The absence of a functor mechanism is one of the most criticized points in the Haskell design. Several e�orts
are currently made to improve Haskell in this respect.

The Spectrum speci�cation language philosophy is to give the user maximal
exibility and manageability
without losing speci�cation power. This is why we provide the user both with a type class mechanism and
with a parameterization mechanism.

Our classes are similar to the Haskell ones but have a di�erent semantics (see [7] for details). Moreover,
they are also allowed to contain axioms. As a consequence they provide an easy-to-use alternative to a very
large number of classical parameterized speci�cations.

�This work is sponsored by the German Ministry of Research and Technology (BMFT) as part of the compound project
\KORSO - Korrekte Software" and by the German Research Community (DFG) project SPECTRUM.

1For a comparison of the above approaches see [15].

1

In order not to decrease speci�cation power we also provide a \classical" parameterization mechanism.
Despite of their conceptual overlapping both mechanisms �t together well. Firstly, it is obvious that param-
eterization will be used only in cases where type classes alone are not powerful enough. Secondly, it turns
out that speci�cations having a type class polymorphism eliminate a parameterization nesting level if used as
formal parameters. This improves the readability and
exibility of the classical parameterization mechanism.

The paper is structured as follows. In Section 2 we give a short presentation of the language Spectrum.
This is by no means complete and it is only intended to aid the understanding of the examples from this paper.
A thorough presentation can be found in [1]. In Section 3 we review the syntax and semantics of parameterized
speci�cations. Section 4 and 5 show how parametric polymorphism and type classes can be used to model
parameterization. These will be combined with an ASL{like parameterization in Section 6. Finally in Section
7 we draw some conclusions and point out some future work.

2 The Speci�cation Language Spectrum

Spectrum is an axiomatic speci�cation language which borrows concepts both from algebraic languages (e.g.
LARCH [9]) and from type theoretic languages (e.g. LCF [20]). An informal presentation with many examples
illustrating its properties is given in [1]. We brie
y summarize its principal characteristics.

As in algebraic speci�cation languages, a Spectrum speci�cation consists of a signature and an axioms
part. However, in contrast to most algebraic languages, the semantics of a speci�cation in Spectrum is loose,
i.e. it is not restricted to initial models or even term generated ones. Loose semantics leaves a large degree of
freedom for later implementations. Spectrum is also not restricted to equational or conditional-equational
axioms, since it does not primarily aim at executable speci�cations. One can use full �rst order logic to write
very abstract and non-executable speci�cations or only use its constructive part to write speci�cations which
can be understood and executed as programs.

The in
uence from type theory is twofold. On the type level Spectrum uses shallow predicative polymor-
phism with type classes. The other in
uence of type theory is in the language of terms and their underlying
semantics. Spectrum incorporates the entire notation for typed �-terms. As a consequence functions are
�rst class citizens. The models of Spectrum speci�cations are assumed to be certain continuous algebras.
Therefore Spectrum supports partial and non{strict functions as well as higher{order functions in the sense
of domain theory.

For example, the following speci�cation de�nes a transitive relation2:

Transitive = f
��The Signature
sort Elem;
.�. : Elem�Elem!Bool prio 6;

��The Axioms
.�. strict total; ��De�nedness axioms
axioms 8 a, b, c : Elem in

a � b ^ b � c) a � c;
endaxioms; g

It introduces the sort Elem and the boolean function .�. in the signature part. The properties of .�. are stated
in the axioms part. Every algebra which has the above signature and satis�es the axioms is a model of this
speci�cation.

Since writing well-structured speci�cations is one of our main goals, a
exible language for structuring
speci�cations has been designed for Spectrum. This structuring is achieved by using so-called speci�cation
building operators which map a list of argument speci�cations into a result speci�cation. The language for
these operators was originally inspired by ASL [17]. The current version also borrows concepts from Haskell,
LARCH and PLUSS [6]. In this paper we will use only the .+., rename and enriches operators3.

Two speci�cations SP1 and SP2 are combined by writing SP1 + SP2. Combination is modeled by taking
the union of signatures and of axioms. As a consequence the properties of an identi�er occurring both in SP1

and in SP2 are combined in SP1 + SP2. To avoid this e�ect by keeping identi�ers from coinciding, to force it
by making identi�ers to coincide or to give a more appropriate name to an identi�er, Spectrum provides the
rename operator.

2Comments are preceded by ��.
3For a full description see [1].

2

The process of building speci�cations hierarchically, by adding new sort and function symbols together
with their corresponding axioms to a given speci�cation, can be expressed as follows:

SP' = f enriches SP; ... new spec. text ... g

We are now able to discuss the parameterization and polymorphism concepts.

3 Parameterization Overview

In most algebraic speci�cation languages a parameterized speci�cation consists of two parts: the formal param-
eters part and the body. The formal parameters part, also called speci�cation interface, describes syntactically
(by the signature) and semantically (by the axioms) the required properties for the actual parameters. The
body describes how actual parameters are used to build the result speci�cation. For example, a parameterized
speci�cation of lists can be de�ned in Spectrum as follows:

LISTparam =
param X = fsort Elemg;
body f enriches X;

��Constructors
[]: List;
cons: Elem�List!List;

�rst: List!Elem;
rest: List!List;
.�.: List� List!List prio 6:left;

cons, �rst, rest, .�. strict; cons, rest, .�. total;

List freely generated by [], cons;

axioms 8 a : Elem, l, m : List in
�rst [] = ?;
�rst(cons(a,l)) = a;

rest [] = [];
rest(cons(a,l)) = l;

[]�l = l;
cons(a,m)�l = cons(a,m�l);

endaxioms; g

In this case the interface is trivial and it only requires the existence of a sort. Since the purpose of the interface
is to select and not to construct algebras, it usually does not contain constructors for the constrained sorts.
This is the reason why the interface is often called requirement theory.

There was a long debate about the semantics of a parameterized speci�cation (see [15]). From a syntactical
point of view parameterization can be understood as \typed" speci�cation abstraction. The actual parameters
must imply the formal ones (modulo a signature morphism). Hence, a parameterized speci�cation can be
considered as a function taking speci�cations into speci�cations.

From a semantical point of view a parameterized speci�cation can be understood as a function taking alge-
bras satisfying the requirement speci�cation into algebras satisfying the speci�cation body4. More generally,
if the body of the parameterized speci�cation is loosely interpreted, one can obtain for one actual parame-
ter algebra a set of body algebras. Therefore, in this view a parameterized speci�cation is actually a set of
functions. In [15] this is called a speci�cation of parametric algebras.

4 Parameterization with Parametric Polymorphism

Strachey [18] distinguished between two major kinds of polymorphism, parametric polymorphism and ad-hoc
polymorphism. Parametric polymorphism is obtained when a function works uniformly on an in�nite range of
sorts with a common structure. This is achieved by abstracting from a concrete sort in the sort expression of
a function. Ad-hoc polymorphism, in contrast, allows a function to work di�erently on �nitely many sorts not

4Since the algebras are usually allowed to contain more sorts and functions as the requirement signature, it is actually the
reduct who must satisfy the requirement theory.

3

necessarily having a related structure. This kind of polymorphism is better known as overloading and can be
simulated in Spectrum (see [1]).

The parametric polymorphism adapted for Spectrum is the simple predicative polymorphism that can
be found in many modern functional programming languages, e.g. ML5. In contrast to more complex versions
of parametric polymorphism like e.g. System F [8], ML polymorphism has no constructs for explicit sort
abstraction or application. A sort inference system computes the implicit instantiations of polymorphic values
by static program analysis. This feature enables a very simple parameterization mechanism without explicit
instantiation and renaming.

In the parameterized speci�cation LISTparam the sort List is de�ned as the sort of interest. The elements
of this sort are constructed by the constructors [] and cons. The construction is based on the basic sort Elem.
The result sort List, however, does not re
ect the fact that the constructed lists have elements of sort Elem.
This information is lost. If the speci�cation is instantiated by a concrete speci�cation, we need a renaming
mechanism to distinguish between di�erent kinds of lists. This de�ciency can be overcome by the use of sort
constructors.

Sort constructors are function symbols on the sort level denoting domain constructors which take a (possibly
empty) sequence of domains as argument and yield a domain as result6. The user can e.g. de�ne a unary sort
constructor List which, applied to an arbitrary sort, yields the sort of lists where the elements are of the sort
given as parameter. Sort constructors of arity zero like e.g. Nat are called basic sorts.

In parametric polymorphism sort abstraction is achieved by the use of sort variables. Sort variables take
the role of absolutely free sorts in parameterized speci�cations. Sort variables and sort constructors are the
basic elements of our sort language, used to build complex sort expressions. If the sort constructor List and
the basic sort Nat are de�ned, the following examples are correct sort expressions, where � is a sort variable
and�and!are built-in in�x sort constructors:

List (List Nat)
��List �!List �

In the example above the sort variable � can be instantiated by an arbitrary sort expression. In the
signature of a speci�cation we can de�ne a polymorphic value by using sort variables in the sort expression of
the de�nition. We can e.g. de�ne a polymorphic list constructor in the following way:

cons: ��List �!List �;

Now we give a polymorphic list speci�cation which is in some sense equivalent to the parameterized speci-
�cation LISTparam. The example shows how parameterization is replaced by parametric polymorphism.

LISTpoly = f
sort List �; ��Sort constructor List

[]: List �; ��Constructor
cons: ��List �!List �; ��Constructor

�rst: List �!�;
rest: List �!List �;
.�.: List ��List �!List � prio 6:left;

cons, �rst, rest, .�. strict; cons, rest, .�. total;

List � freely generated by [], cons;

axioms 8 a : �, l, m : List � in
�rst [] = ?;
�rst(cons(a,l)) = a;

rest [] = [];
rest(cons(a,l)) = l;

[]�l = l;
cons(a,m)�l = cons(a,m�l);

endaxioms; g

5Therefore sometimes also called ML polymorphism.
6In the following we will not distinguish between the syntactical notion `sort' and the semantical notion `domain'.

4

Of course the �rst di�erence to the parameterized version is the lack of a parameter speci�cation. The
second di�erence is the de�nition of a sort constructor List. The sort variable � is used as a formal parameter,
indicating the unarity of the constructor. Next, all functions in the signature are de�ned polymorphically.
With the help of the sort variable � we abstract from a concrete element sort. The sort variable � takes the
role of the dummy sort Elem. The use of the sort constructor enables us to relate the element sort with the
list sort. Finally, in the axioms part we also use a sort variable instead of the dummy sort. The axioms are
valid for all instantiations of the sort variable. By using sort variables in the axioms part a uniform behaviour
of the polymorphic functions can be achieved.

As we already pointed out, semantically a parameterized speci�cation can be seen as a set of functors
mapping algebras to algebras. In a polymorphic speci�cation the task of a functor is shared by a sort con-
structor and the corresponding polymorphic functions. The sort constructor maps algebras into sorts and
the polymorphic functions map algebras into (functional) values7. Hence, a polymorphic speci�cation already
provides a restricted form of parameterization.

As soon as the speci�cation LISTpoly is combined with another speci�cation module, the constructor List can
be used to build complex sort expressions. The polymorphic functions can be applied to arbitrary operands
matching the argument sort. This can be achieved without instantiating a parameterized speci�cation or
renaming a function symbol. Instantiation is implicitly done by the sort inference system. Because of the sort
constructor even the sort of interest has not to be renamed. This makes polymorphism a very user friendly
parameterization mechanism.

Further, it is important for the design of proof support systems that the speci�cation LISTpoly is needed
only once in such a system. In particular, it is quite easy to prove theorems \generically" in the polymorphic
speci�cation.

5 Parameterization with Sort Classes

In the last section we saw that parametric polymorphism together with user de�ned sort constructors in many
cases gives an elegant alternative to the classical parameterization mechanism. However, although very simple
and elegant, parametric polymorphism alone is rarely su�cient in practice. Normally we do not want to
abstract from all possible sorts, but only from those which satisfy some requirements.

Suppose we want to specify a predicate .2., testing whether an element is contained in a list. Unfortunately,
.2. is not monotonic on non-
at sorts. However, because we want to implement this function later8, we have
to restrict the possible domains of .2. to
at sorts. The same problem arises in the functional programming
language ML. Because the equality of values is not computable on the non-
at function space, the polymorphic
equality is restricted to
at domains by tagging the sort variables9.

Sort classes, introduced by Wadler and Blott [19], generalize this tagging mechanism by shifting from an
unsorted to a sorted parametric polymorphism. This concept, �rstly implemented in the functional language
Haskell is also available in Spectrum.

We now show how to model constrained parameterized speci�cations with the help of sort classes. For this
purpose we extend the list speci�cation by the predicate .2. . Using classical parameterization mechanism this
can be achieved in the following way:

Equalityparam = f
sort Elem;

.==. : Elem�Elem!Bool;

.==. strict total;

axioms 8 a, b : Elem in
(a == b) , (a = b);

endaxioms; g

LIST0

param =
param X = Equalityparam;
body f

enriches LISTparam(X);
.2. : Elem�List!Bool;

7In the polymorphic setting each algebra must be uniquely identi�ed by its carrier of interest.
8It is well-known (see [8]) that non-monotonic functions are not implementable.
9Of course this tag propagates to functions based on the equality.

5

.2. strict total;

axioms 8a, x : Elem, l : List in
:(a 2 []);
a 2 cons(x,l) , (a == x) _ a 2 l;

endaxioms; g

Equalityparam is the requirement theory. It selects those actual parameters which contain a boolean function
.==. coinciding with the strong built-in equality .=. on the de�ned values of sort Elem. This function is usually
called weak equality. The requirement theory can be modelled by a sort class as follows:

Equalitypoly = f
class EQ;

.==. : � :: EQ) ���!Bool;

.==. strict total;

axioms � :: EQ) 8 a, b : � in
(a == b) , (a = b);

endaxioms; g

The speci�cation de�nes the class EQ of sorts containing a weak equality. Technically, this is obtained by
introducing a new class EQ and by restricting the equality function .==. by the premise � :: EQ. This premise
states that in each application of .==. the sort variable can only be replaced by a sort expression of class EQ.
The same premise can be found in the axioms part. Hence, the axioms are valid for all sorts of class EQ. The
sort of the object variables a and b must be of class EQ, because otherwise the application of the equality
function .==. would result in a sort error.

Based on this speci�cation the speci�cation LIST0

poly can be written without parameter speci�cation.

LIST0

poly = f enriches LISTpoly + Equalitypoly ;

.2. : � :: EQ) ��List �!Bool;

.2. strict total;

axioms � :: EQ) 8a, x : �, l : List � in
:(a 2 []);
a 2 cons(x,l) , (a == x) _ a 2 l;

endaxioms; g

The sort class EQ is used to restrict the range of the sort variable �. The predicate .2. is only applicable
on those sorts where the weak equality .==. is available.

Now we have de�ned functions that work on all sorts of class EQ, but we have not de�ned any sort to
be of class EQ. Which sorts actually belong to the sort class EQ is explicitly controlled by the speci�er.
Consequently, the speci�er has control over the possible instances of the polymorphic list operations.

Assuming a speci�cation NAT which contains a sort Nat, the following example shows how Nat is de�ned
to be of class EQ.

ListUser = f enriches LIST0

poly + NAT ;

Nat :: EQ;
: : : g

In this speci�cation both .==. and .2. can be applied to elements of sort Nat. Declaring Nat to be of class
EQ yields a consistent speci�cation because Nat is a
at sort. On non-
at sorts the declaration would lead to
an inconsistent speci�cation. The generation of proof obligations is not part of the language but part of the
methodology.

When modeling parameterization with sort classes, the classical functor is replaced by three constructs.
The sort constructor and the polymorphic functions play the same role as explained in section 4. The only
di�erence is the sort restriction in the polymorphic functions .==. and .2. . The third construct needed is the
explicit declaration that a sort belongs to a particular class, as shown above. In fact this declaration replaces the
actual application of a parameterized speci�cation, because only this declaration allows the restricted functions
to be applied to elements of this sort. There is, however, a di�erence between these two approaches. If the
parameterized speci�cation LIST0

param is applied to some speci�cation, this speci�cation must already provide
an equality predicate .==. satisfying the interface axioms. In our approach, the explicit class declaration

6

de�nes the predicate .==. to work on the elements of the declared sort. In a further example we will go into
this di�erence again.

Up to now we have only de�ned basic sorts to be of a particular class. Similar to Haskell, Spectrum
also allows to provide non-basic sort constructors with a class information. Sort constructors can even be
overloaded with class information, i.e. it is allowed to de�ne more than one class information for a particular
sort constructor. This feature enables us to express the fact, that a constructed sort belongs to some class, if
the parameter of the sort constructor belongs to a particular class.

Let us extend the speci�cation LIST0

poly by the following declaration:

List :: (EQ)EQ;

This means, that if the sort constructor List is applied to a sort of class EQ, the result is also of class EQ.
It de�nes the argument and result class of the sort constructor List. If the sort Nat is of class EQ, the function
.==. can now be applied to elements of the sort List Nat, List List Nat, and so on. Thus, with the help of
sort constructors together with a class information it can be achieved that one explicit class declaration of a
sort entails in�nitely many class declarations of constructed sorts. This propagation of class memberships is
an important advantage in contrast to classical parameterization. It can not be achieved with parameterized
speci�cations. In the example each nested list would have to be instantiated and renamed explicitly.

Partial Order on Sort Classes

Suppose we want to enrich the speci�cation List0poly by a minimum function computing the minimal element
of a list. To specify such a function we need the assumption that there exists a total order .�. on the element
sort. The speci�cation of a total order, however, is based on the equality .==. . In a parametric speci�cation
this would lead to a hierarchical interface speci�cation.

The sort class system of Spectrum o�ers a mechanism to deal with hierarchical theories, i.e. re�nement
and enrichment of theories. The user can de�ne a partial order on sort classes, namely that a sort class is
a subclass of another sort class. This leads to an order-sorted (order-classi�ed to be precise) polymorphism
concept. Semantically, it means that if a sort belongs to a class, it also belongs to all superclasses of this
class. This implies that if a function is restricted to the sorts of a particular class, the function is also available
on the sorts of all subclasses. The following example demonstrates this feature by enriching the speci�cation
Equalitypoly .

Ordering = f enriches Equalitypoly ;

class TO subclass of EQ;

.�.: � :: TO) ���!Bool;

.�. strict total;

axioms � :: TO) 8 a, b, c: � in
a � a; ��re
exivity
a � b ^ b � c) a � c; ��transitivity
a � b ^ b � a) a == b; ��antisymmetry
a � b _ b � a; ��totality

endaxioms; g

Based on this speci�cation we can now enrich LIST0

poly by a minimum function as follows:

LIST00

poly = fenriches LIST0

poly + Ordering;

min : � :: TO) List �!�;
min strict;

axioms � :: TO) 8 e : �, s : List � in
s 6= []) min(s) 2 s ^ (e 2 s) min(s) � e);

endaxioms; g

To use the minimum function on lists over natural numbers we must declare the sort Nat to be of class
TO. Because TO is a subclass of EQ this declaration automatically entails that Nat is of class EQ.

As already mentioned there is a di�erence between the application of a parameterized speci�cation and the
declaration of a class membership. If we declare the sort Nat to be of class TO no order predicate .�. must
be de�ned on Nat. The declaration only de�nes the requirements for such a predicate on the natural numbers

7

but does not �x a particular order. This is also in contrast to the functional programming language Haskell
where an instantiation of a class must always provide an executable body for each function of the class. But
this would be to restrictive for a speci�cation language and is only necessary if the speci�cation should be
executable.

6 Classical Parameterization

Parametric polymorphism combined with sort classes i.e. \order{sorted parametric polymorphism" is powerful
enough to model most of the classical examples for parameterized speci�cations. In all these examples sort
abstraction is done only over one sort or in other words the requirement theories have only one sort of interest.

However, there are cases in which we want to abstract not only over one sort but over n{tuples of
sorts. A typical example is the theory of vector spaces. Here we abstract from tuples of sorts of the form
(�, �) :: scalars� vectors which satisfy the vector space properties. There are also cases in which we want to
abstract from n-ary sort constructors (not only basic sorts). A typical example is a container structure which
has lists and vectors as instances. For such cases, in order to keep the sort class mechanism simple, we provide
speci�cation abstraction10. A parameterized speci�cation of the container theory is the following one:

CONTAINERparam =
param X = fsort Elemg;
body f enriches X + NAT;

sort Container;
[] : Container;
cons : Elem�Container!Container;
nth : Container�Nat!Elem;
len : Container!Nat;
��Container axioms g

CONTAINERparam can subsequently be applied to any speci�cation if it is also indicated which sort in this
speci�cation corresponds to Elem. In general one has to give a mapping (a renaming list) from the signature
of the formal parameter to the signature of the actual parameter if this is not an inclusion. As an example we
can instantiate CONTAINERparam with NAT as follows:

NatContainer = CONTAINERparam(NAT via [[[Elem to Nat]]])

The result of the above instantiation is the body of CONTAINERparam with NAT substituted for each occurrence
of X and Nat substituted for each occurrence of Elem.

Using the parameterized container theory we can de�ne a variation of the well known map function.
This variation applies an argument function to all elements of a container and yields another container with
duplicates eliminated. To eliminate the duplicates we need a boolean function to test for equality.

MAPparam =
param

X = fsort X Elemg;
Y = rename Equalityparam by [[[Elem to Y Elem]]];
Z = CONTAINERparam;

body f enriches X + Y
+ rename Z(X via [[[Elem to X Elem]]]) by [[[Container to X Container,

[] to X [],
cons to X cons,
nth to X nth, len to X len]]]

+ rename Z(Y via [[[Elem to Y Elem]]]) by [[[Container to Y Container,
[] to Y [],
cons to Y cons,
nth to Y nth, len to Y len]]];

map : (X Elem!Y Elem)�X Container!Y Container;
��Map axioms g

10According to [15] this mechanism allows to construct parameterized speci�cations in contrast to speci�cations of parametric
algebras.

8

We can subsequently instantiate this speci�cation with actual speci�cations for X, Y and Z. It is important
to note that the instances of parameterized speci�cations have to be legal, non-parameterized speci�cation
expressions. Furthermore, we do not allow partial instantiations. Suppose we are given the parameterized
speci�cations LIST and VECT of lists and vectors both having at least the CONTAINERparam functions and
satisfying its axioms. Further, we assume that NAT provides at least a weak equality .==. on Nat. Then we
can build for example the following instances:

ListMap = MAPparam(NAT via [[[X Elem to Nat]]], NAT via [[[Y Elem to Nat]]], LIST via [[[Container to List]]])

VectMap = MAPparam(NAT via [[[X Elem to Nat]]], NAT via [[[Y Elem to Nat]]], VECT via [[[Container to Vector]]])

Because NAT satis�es the trivial theory as well as the equality theory and LIST and VECT satisfy the container
theory the instances have the properties we expect them to have. As with sort classes, proof obligations are
treated at the methodology level.

As probably noted, classical parameterization alone involves a lot of complications. First, we have to allow
parameterized speci�cations as parameters and then we have to take care of name clashes. Furthermore,
classical parameterization alone does not take advantage of the new facilities of Spectrum by requiring the
speci�cations LIST and VECT to be parameterized in a classical and not in a polymorphic way.

However, when combined with sort classes, parameterization becomes a simple and very powerful mecha-
nism. For example, we can write a polymorphic version of containers as follows:

CONTAINERpoly = f enriches NAT;
sort Container �;
[]: Container �;
cons : ��Container �!Container �;
nth : Container ��Nat!�;
len : Container �!Nat;
��Container axioms g

We can now use CONTAINERpoly to de�ne the parameterized speci�cation:

MAPpoly =
param X = CONTAINERpoly;
body f enriches X + Equalitypoly ;

map : �::EQ) (�!�)�Container �!Container �;
��Map axioms g

Subsequently, MAPpoly can be instantiated with the polymorphic versions of LIST and VECTOR easily by
writing:

ListMap = MAPpoly(LIST via [[[Container to List]]])

VectMap = MAPpoly(VECT via [[[Container to Vector]]])

Obviously, the second version is easier to write and to understand as the �rst one, because it takes advantage of
the new facilities of our language Spectrum. Moreover, no new complications are introduced when combining
both approaches.

7 Conclusions and Future Work

We presented a speci�cation formalism combining the elegance of implicit with the power of explicit param-
eterization. In contrast to e.g. Extended ML which only combines parametric polymorphism with explicit
parameterization our language combines type-classed parametric polymorphism with explicit parameteriza-
tion. Moreover, we are not aware of any other algebraic speci�cation language which includes type classes.
The only logical system we know to include type classes is the Isabelle [14] theorem prover. The experience we
gained by some case studies encouraged us to consider the combination of both parameterization mechanisms
to be very useful. However, further case studies have to be done.

A very important application of type classes which we did not treat in this paper is overloading. Type
classes not only solve the overloading problem from ML but also allow user controlled overloading. This is
essential in every algebraic formalism.

An interesting question is how far the implicit mechanism can be extended. For example [3] presents a
class concept allowing also to abstract from sort constructors and [12, 13] try to cope with classes abstracting
over tuples of sorts.

9

Acknowledgement

For comments on draft versions and stimulating discussions we would like to thank our colleagues C. Fac-
chi, R. Hettler, H. Hussmann, F. Regensburger, B. Rumpe and O. Slotosch. Special thanks go to Tobias
Nipkow whose work inspired our treatment of type classes, to Martin Wirsing who in
uenced the classical
parameterisation mechanism and to Manfred Broy whose role was decisive in the design of the Spectrum
language.

References

[1] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regensburger, and K. St�len.
The requirement and design speci�cation language spectrum: An informal introduction { Version 1.0,
Part I,II. Technical Report TUM-I9311, TUM-I9312, Technische Universit�at M�unchen, 1993.

[2] R. Burstall and J. Goguen. The semantics of CLEAR, a speci�cation language. In Proceedings of Advance
Course on Software Speci�cation, volume 86 of LNCS, pages 292{332, 1980.

[3] K. Chen, P. Hudak, and M. Odersky. Parametric Type Classes. In ACM Conference on LISP and
Funtional Programming, 1992.

[4] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1. Springer, 1985.

[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 2: Module Speci�cations and Constrains.
Springer, 1990.

[6] M.-C. Gaudel. Towards Structured Algebraic Speci�cations. ESPRIT `85', Status Report of Continuing
Work (North-Holland), pages 493{510, 1986.

[7] R. Grosu and F. Regensburger. The Logical Framework of spectrum. Draft, 1993.

[8] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press, 1992.

[9] J. Guttag, J. Horning, and J. Wing. Larch in Five Easy Pieces. Technical report, Digital, Systems
Research Center, Paolo Alto, California, 1985.

[10] R. Harper, D. MacQueen, and R. Milner. Standard ML. Report ECS-LFCS-86-2, Univ. Edinburgh, 1986.

[11] P. Hudak, S. P. Jones, and P. Wadler, editors. Report on the Programming Language Haskell, A Non-strict
Purely Functional Language (Version 1.2). ACM SIGPLAN Notices, May 1992.

[12] M. Jones. Type Inference For Quali�ed Types. Technical Report PRG-TR-10-91, Oxford University
Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, 1991.

[13] S. Kaes. Type Inference in the Presence of Overloading, Subtyping and Recursive Types. In Proc. ACM
Conf. Lisp and Functional Programming, 1992.

[14] T. Nipkow. Order-Sorted Polymorphism in Isabelle. In G. Huet, G. Plotkin, and C. Jones, editors, Proc.
2nd Workshop on Logical Frameworks, pages 307{321, 1991.

[15] D. Sannella, S. Sokolowski, and A. Tarlecki. Toward formal development of programs from algebraic
speci�cations: parameterization revisited. Technical Report 6/90, Universit�at Bremen, 1990.

[16] D. Sannella and A. Tarlecki. Program speci�cation and development in Standard ML. In Proc. 12 ACM
Symp. on Principles of Programming Languages, pages 67{77, 1985.

[17] D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci�cation and Implementation. Tech-
nical Report CSR-131-83, University of Edinburgh, Edinburgh EH9 3JZ, Sept. 1983.

[18] C. Strachey. Fundamental Concepts in Programming Languages. In Lecture Notes for International
Summer School in Computer Programming, Copenhagen, 1967.

[19] P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less Ad hoc. In 16th ACM Symposium on
Principles of Programming Languages, pages 60{76, 1989.

[20] C. Wadsworth, M. Gordon, and R. Milner. Edinburgh lcf: A mechanised logic of computation. In LNCS
78. Springer, 1979.

10

