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Abstract—In this paper, we investigate the problem of optimiz-
ing the lifetime of a mobile ad hoc network at a given degree &
of connectivity by minimizing power consumption. Our proposed
solution is fully distributed and uses a model-based transmission
power adaptation strategy based on model-predictive control.

I. INTRODUCTION

Various civil and military applications possess an inherent
need for the rapid deployment of mobile users and concomitant
network support. Centralized and organized network connec-
tivity is inappropriate for such applications; rather, they require
mobile ad hoc networks (MANETSs) [1]. A MANET is an
autonomous collection of mobile devices that communicate
over wireless links. Mobile devices are typically powered
by batteries, and it is expensive and sometimes infeasible to
recharge them.

MANETs are intrinsically decentralized, meaning that all
network activities, including discovering the topology and de-
livering messages, must be executed by the nodes themselves.
Nodes running out of battery power not only lose their own
individual capabilities, but also impact the entire network
by changing, for example, routing functionality. In addition,
connectivity is strongly influenced by frequently changes in
topology due to node mobility.

In this paper, we present a novel, power-aware approach
for increasing the robustness of MANETSs. The robustness
of a wireless ad hoc network is characterized by its level
of k-connectivity over time. The particular problem we are
interested in solving is the transmission-power assignment
(TPA) problem for k-connectivity: optimizing the lifetime of
a MANET at a given degree k of connectivity by minimizing
power consumption. Algorithms that address this problem
are sometimes referred to as fopology control algorithms [2].
The interest in studying the TPA for k-connected MANET is
motivated by the fact that, when a network is k-connected, up
to k — 1 node failures can be tolerated without disconnecting
the network.

We approach this optimization problem from a decision-
theoretical point of view. Network’s future connectivity degree
and remaining energy are predicted in order to derive an
optimal TPA sequence that steers the network behavior to
the desired connectivity level k£ while minimizing energy
consumption. Our localized topology control algorithm is fully
distributed and experimental results reveal that our algorithm
provides an almost identical control policy to that of a glob-
alized scheme.
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II. DESCRIPTION OF OUR APPROACH

Our topology control algorithm uses a TPA scheme based on
model-based predictive control [3]. Referring to this method-
ology, our control algorithm utilizes a dynamic model of the
network to predict and guide the future network behavior in
terms of energy consumption and connectivity degree. At each
sampling interval, an optimal sequence of TPAs is calculated in
such a way to optimize a cost objective function over a future
horizon. In this way, we characterize the dynamic network
model using an input-output black-box modeling technique,
in which the inputs wu(t) correspond to TPAs and the outputs
y(t) are the connectivity and remaining energy levels:

Az(t) + Bu(t) + w(t) (1)
Cz(t) + v(t) (2)

z(t+1) =
y(t)

where z(t) is the desired, but not know, network state.
In (1) and (2), w(t) and v(t) are random variables respec-
tively representing the node mobility disturbance in the state
equation and the error sources in the observation equation
due to the use of a localized algorithm for the vertex con-
nectivity feedback mechanism. Localized algorithms incur
significantly less computation and communication overhead.
In our localized algorithm, each node utilizes the connectivity
information embedded in the p-hop subgraph centered at itself
(derived from p-hop neighborhood) in order to estimate global
k-connectivity. The localized algorithm makes our system
partially observable because we estimate a global network
property from local link-state information. As such, the model
we deal with is a partially observable stochastic model [4].

The dynamic network behavior is unknown and we thus
apply a black-box approach to learn network model [5]. This
is a very flexible mathematical approach that allows one to
build models by analyzing the measured data obtained by
experimentations. As such, we can derive the model without
knowing the rules that govern the network.

In the black-box approach, the network state z(t) is not
directly measurable. The issue then is to estimate x(¢) given
access only to the measured outputs y(t) as shown in Figure 1.

The Kalman estimator is an efficient recursive filter that
estimates the state of a dynamic dynamic system from a series
of incomplete and noisy measurements [4]. An important
aspect of our topology control algorithm is the rate at which
it samples the output variables yq(t) (the k-connectivity level)
and y;(t) (the remaining battery) of the MANET under
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Fig. 1. Kalman Estimator schema used by the topology control algorithm.

observation: the higher the sampling rate, the more accurate
the view of the network state. The higher the sampling
rate, however, the higher the computation and communication
overhead incurred by the control policy, and therefore the
greater the drain on the battery energy reserves. We therefore
use Kalman estimation error to adaptively adjust the sampling
rate. Each node can make predictions of future measurement
based on the Kalman estimator prediction/correction paradigm.
As such, new observations will be compared to previous
predictions and an error value will be calculated on the basis of
these comparisons. If the error value exceeds the predefined
admissible error range, the sampling rate will be increased;
otherwise, it will be decreased.

Assuming that the estimates of x(t) are available at time ¢,
the optimal TPA sequence is obtained by solving the following
quadratic problem (notation: Hng?:zTQx):

min

P
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in which Au(t) = u(t) — u(t — 1) and g(t + {]t) is the
predicted value of y at time ¢ 4 [ based on the information
available at time ¢. The vector 7(¢) represents the reference
points for the network behavior and consists of 7¢(t), the
desired k-connectivity (e.g. 10-connectivity) and r(t), the
desired remaining battery. 1 (¢) is set to the maximum battery
charge since the aim is to save energy. B and I" are weighting
matrices. The less the weight, the less important is the behavior
of the corresponding variable to track the overall desired
behavior. The sequence of transmission power adjustments
Auwu is computed over a control horizon C. The prediction
horizon P is the number of sampling intervals where the
future outputs are predicted. The control horizon is the number
of input actions computed to guide future outputs along the
prediction horizon. The proposed algorithm is characterized
by the following steps:
1) Exchange Topology Information with p-hop neighbors;
2) Measure the local variables y(t) and update state esti-
mation I(t);
3) Adjusted sampling interval if the estimation error e(t)
is out of a predefined admissible range;
4) Solve the local linear quadratic problem to obtain future
TPAs;
5) Apply the first transmission power assignments u(t);
6) Go to step 1 in the next sample interval.
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Fig. 2. Comparison of global and local control on node 25.

Area Nodes | Batt Time o r1 | To I B
50x50m 100 200J | 4000s | 200 8 1 100 | 0.8
TABLE I

SIMULATION SETTING

III. CONCLUSION

For the experimental evaluation, we conducted a number of
simulations, comparing the globalized topology control with
a localized one requiring only knowledge of a 5-hop neigh-
borhood. In the globalized case, we assume that an external
watcher can access to neighbors tables of all nodes without
requesting communication. In this way the external watcher
has the exact picture of the network and can find the optimal
policy. Our topology control algorithm is implemented on the
Castalia open-source simulation environment[6]. Simulation
model captures a mobile ad hoc sensor network of Mica2
motes using Chipcon CC1100 transceivers. The movement
model is one in which nodes move randomly with obstacle-
free trajectories. Table I provides the configuration parameters
for the simulation. Figure 2(a) compares the TPAs of the
global (red line) and local (blue line) algorithms for node
25. Likewise, Figure 2(b) compares the k-connectivity and
battery-level measurements of the global (red line) and local
(red line) approaches. The comparison reveals that our local-
ized topology control algorithm provides an almost identical
control policy to that of the globalized scheme. The difference,
of course, is in the scalability of our localized solution, which
requires much less communication bandwidth and energy.
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