
XSpeed: Accelerating Reachability Analysis on
Multi-core Processors

Rajarshi Ray1?, Amit Gurung1, Binayak Das1,
Ezio Bartocci2, Sergiy Bogomolov3, and Radu Grosu2

1 National Institute of Technology Meghalaya, India
2 Vienna University of Technology, Austria

3 Institute of Science and Technology Austria, Austria

Abstract. We present XSpeed a parallel state-space exploration algo-
rithm for continuous systems with linear dynamics and nondeterministic
inputs. The motivation of having parallel algorithms is to exploit the
computational power of multi-core processors to speed-up performance.
The parallelization is achieved on two fronts. First, we propose a parallel
implementation of the support function algorithm by sampling functions
in parallel. Second, we propose a parallel state-space exploration by slic-
ing the time horizon and computing the reachable states in the time slices
in parallel. The second method can be however applied only to a class
of linear systems with invertible dynamics and fixed input. A GP-GPU
implementation is also presented following a lazy evaluation strategy on
support functions. The parallel algorithms are implemented in the tool
XSpeed. We evaluated the performance on two benchmarks including an
28 dimension Helicopter model. Comparison with the sequential coun-
terpart shows a maximum speed-up of almost 7× on a 6 core, 12 thread
Intel Xeon CPU E5-2420 processor. Our GP-GPU implementation shows
a maximum speed-up of 12× over the sequential implementation and 53×
over SpaceEx (LGG scenario), the state of the art tool for reachability
analysis of linear hybrid systems. Experiments illustrate that our paral-
lel algorithm with time slicing not only speeds-up performance but also
improves precision.

1 Introduction

Reachability analysis is a standard technique for safety verification, analysis and
synthesis of continuous and hybrid systems. Since exact computation of reach-
able states is in general intractable, set-based conservative computation methods
has been proposed in the past with different choice of sets [1,2][7,8,9][12][22]. The
reachable states are represented as a collection of continuous sets (⊂ Rn) with a
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symbolic representation of each individual set. Precision and scalability has been
the two challenges with such set-based methods. The symbolic set representation
plays a key role in deciding the efficiency of the reachability algorithm. Recently,
algorithms using convex sets represented by support functions [12] and zonotopes
[9] have shown promising scalability. Systems having dimension as large as 100
have been shown to be computed efficiently with support-function-based algo-
rithms.

The advent of multi-core architectures and many-core parallel co-processors
like graphics processing units (GPUs) have provided tremendous computing
power at our disposal. In this work, our goal is to leverage these powerful par-
allel architectures to speed-up the performance of reachability analysis and also
possibly the precision of analysis. There has been prior work on devising parallel
algorithms for discrete state concurrent systems in order to speed-up their per-
formance on multi-core machines. Parallel state-space-search algorithms in the
model-checker SPIN has been proposed in [6][13]. A GP-GPU implementation
of the algorithms in SPIN has been proposed in [3]. However, no prior work is
known to us on parallel state-space exploration of continuous and hybrid systems
except for [17] which presents some preliminary results.

In particular, we consider the support-function-based reachability algorithm
and propose two parallel versions of it. The first, samples the support functions
along the template directions in parallel. This algorithm could be applied to
any system with linear dynamics and nondeterministic inputs (ẋ = Ax(t) +
u(t), u(t) ∈ U , x(0) ∈ X0). The second computes the reachable sets in slices of the
time horizon. This algorithm can be applied to the class of linear systems whose
dynamics A is invertible and the input set U is a point set. We also propose a GP-
GPU implementation of the algorithm by following a lazy evaluation strategy.
Our current GP-GPU implementation restricts X0 and U to be specified as
hyperbox.

The organization of the paper is as follows. In Section 2, we present prelimi-
naries on support functions and a reachability analysis algorithm using support
functions. In Section 3, a parallel implementation scheme of the algorithm and
our parallel state-space exploration algorithm is presented. We present our GPU
implementation scheme in Section 4 to sample support functions in parallel in
GPU cores. The experimental results are presented in Section 5 illustrating the
achieved speed-up and precision. We conclude in Section 6.

2 Preliminaries

Since our work is focused on the support-function representation of compact
convex sets, we recap the definition of support functions and template polytopes
in Section 2.1. The reachability algorithm using support functions is discussed
in Section 2.2.



2.1 Support Functions

Definition 1. [18] Given a nonempty compact convex set X ⊂ Rn the support
function of X is a function supX : Rn → R defined as:

supX (`) = max{` · x | x ∈ X} (1)

where ` · x is the scalar product of direction ` and vector x, that is, the
projection of x on direction `. A compact convex set X is uniquely determined
by the intersection of the halfspaces generated by support functions in all possible
directions ` ∈ Rn.

X =
⋂
`∈Rn

` · x ≤ supX (`) (2)

Definition 2. Given the support function supX of a compact convex set X and
a finite set of template directions D, the template polytope of the convex set X
is defined as:

PolyD(X ) =
⋂
`∈D

` · x ≤ supX (`) (3)

Proposition 1. Given a polytope X = {x ∈ Rn | P · x ≤ Q}, the support
function of X in the direction ` is the solution to the Linear Program (LP):

supX (`) =


maximize ` · x
subject to:

P · x ≤ Q

Proposition 2. Given a hyperbox H = {x ∈ Rn | x ∈ [a1, b1] × . . . × [an, bn]},
the support function of H in the direction ` = (`1, `2, . . . , `n) is given by:

supH(`) =

n∑
i=1

`i · hi , where hi =

{
ai if `i < 0

bi otherwise

where ai and bi are the lower and upper bound respectively ofH in the dimension
i.

2.2 Reachability Analysis using Support Functions

In this work, we consider continuous linear systems with constrained inputs and
initial states. The dynamics of such systems is of the form:

ẋ = Ax(t) + u(t), u(t) ∈ U , x(0) ∈ X0 (4)

where X0, U is the set of initial states and the set of inputs given as compact
convex sets, respectively.

We now discuss the algorithm proposed in [12] for computing reachable states
using support functions. The algorithm discretizes time by a time step δ and



computes an over approximation of the reachable set in time horizon T by a set
of convex sets represented by their support functions, as shown in Equation 5.

Reach[0,T ](X0) ⊆
N−1⋃
i=0

(Ωi) (5)

The convex sets Ωi are given by the following equations:

Ωi+1 = ΦδΩi ⊕W
Ω0 = CH(X0, ΦδX0 ⊕ V)

(6)

where ⊕, CH stands for minkowski sum and convex hull operation over sets
respectively, Φδ = eδA and W, V are convex sets given as follows:

V = δU ⊕ αB
W = δU ⊕ βB

(7)

α, β are constants depending on X0, U , δ and the dynamics matrix A. B is a
unit ball in the considered norm.

The support function representation of Ωi can be seen as an abstraction
of its template polyhedra representations. A concretization can be obtained by
computing template polyhedra approximations of Ωi along a set of directions D.
Such concretization provides an efficient computation of intersection, plotting
and other efficient operations over polytopes but at the expense of an approxi-
mation error depending on the number of template directions and the choice of
directions.

The algorithm considers a set of bounding directions, say D, to sample the
support functions of Ωi and obtains a set of template polyhedra PolyD(Ωi)
whose union over-approximates the reachable set.The support function of Ωi is
computed with the following equation obtained using the properties of support
functions:

supΩi+1
(`) = supΩi

(ΦTδ `) + supW(`)

supΩ0
(`) = max

(
supX0

(`), supX0
(ΦTδ `) + supV(`)

) (8)

Simplification of Equation 6 yields the following relation:

supΩi
(`) = supΩ0

(
(ΦTδ )i`

)
+

i−1∑
j=0

supW
(
(ΦTδ )j`

)
(9)

3 Parallel State-Space Exploration

In this section, we present two approaches to parallelize the support-functions-
based reachability algorithms in Section 3.1 and Section 3.2.



3.1 Parallel Samplings over Template Directions

The LGG (Le Guernic Girard) scenario of the state of the art tool, SpaceEx [8]
computes reachable states using a support-functions algorithm with the provision
of templates in box, octagonal and p uniform directions. A box polyhedron has
2n directions (xi = ±1, xk = 0, k 6= i) whereas an octagonal polyhedron has
2n2 directions (xi = ±1, xj = ±1, xk = 0, k 6= i, k 6= j), giving a more precise
approximation. The support function algorithm scales well when the number of
template directions is linear in the dimension n of the system. When computing
finer approximations with directions quadratic in n, we trade-off precision for
scalability.

The support-functions-based algorithm is easy to parallelize by sampling the
template directions in parallel [12]. However, there are implementation chal-
lenges. In this work, we propose a multi-threaded implementation with a master
thread spawning worker threads for every direction in the template set D. The
pseudocode of master thread is shown in Algorithm 1. A global support function
matrix M having R rows and N columns is allocated to store the computed sup-
port functions by different worker threads, where R is the number of directions
in D and N = T/δ is the number of iterations. Each worker thread ti computes
the support function samples along a direction d(i) in parallel. The results by
thread ti are written to the row M [i] resulting in no write contention among the
threads. An entry M(i, j) stores the support function of Ωj in the ith direction
in D as shown in lines 2-3 in Algorithm 2.

The master thread waits for all the worker threads to complete. After all the
worker threads have finished, we have a template polytope PolyD(Ωi) for every
convex set Ωi which is obtained from the support function as shown in lines 7-9
in Algorithm 1.

Algorithm 1 Pseudocode of Master Thread

1: procedure Reach-Parallel-Master(D,N)
2: for all `i ∈ D do . Master Thread
3: Spawn a thread ti to sample sup of Ω0 . . . ΩN−1 along `i
4: end for
5: Wait for all threads to finish.
6: Rapprox ← ∅
7: for i← 0, N − 1 do
8: PD(Ωi)←

∧|D|
j=1 d(j).x ≤M(j, i)

9: Rapprox ← Rapprox
⋃
PD(Ωi)

10: end for . Reach[0, T ] ⊆ Rapprox
11: end procedure

Sampling with Thread Safe GLPK It can be seen that when the initial
set X0 in a location dynamics in 4 is given as a polytope, the convex sets Ωi in
Equation 6 are also polytopes. Sampling the support function of a polytope is a
linear programming problem. SpaceEx LGG scenario expects initial set X0 and



Algorithm 2 Pseudocode of Worker Thread

1: procedure Reach-Parallel-Worker(M ,N ,`,i) . Worker Thread . Each
thread gets an id i ∈ [1, R]

2: for j ← 0, N − 1 do
3: M [i][j]← supΩj (`)
4: end for
5: end procedure

U to be polytopes and samples their support function using the GLPK (GNU
Linear Programming Kit) library [15], an open source and highly optimized linear
programming solver library. In our parallel implementation we also assume initial
and input sets to be polytopes and use GLPK package to solve their support
functions. However, note that the GLPK library is not thread safe This is due to
the fact that GLPK implementation uses thread shared data that suffers from
race condition in multithreaded executions. To overcome this, we identified the
thread shared data and made them thread local to ensure thread safety. The
thread safe GLPK objects are used per thread to compute the support functions
at different directions in parallel.

3.2 Parallel Exploration of Reachable States

In addition to the parallelization introduced in the previous section, we also pro-
pose another parallelization where threads compute reachable states in disjoint
intervals of the time horizon in parallel. To bring in parallelism, our key idea is
to compute the reachable states at distinct times in the time horizon and treat
them as initials states for independent reachability computations. The reachable
states from each of the initials states is then computed by an independent thread
in parallel. For load balancing, the time horizon T is sliced into equal intervals
of size Tp = T/N , N being the degree of parallelism. The limitation of this ap-
proach is that the input set U is assumed to be a point set and the dynamics
matrix A is assumed to be invertible.

Proposition 3. Given a linear dynamics of the form ẋ = Ax(t)+u(t), u(t) ∈ U ,
if the input set U = v is a point set and the matrix A is invertible, the set of
states reachable at time ti = iTp is defined as:

S(ti) = eAiTp .X0 ⊕A−1(eAiTp − I)(v) (10)

where I is the identity matrix.

Proof. Solving the differential equation ẋ = Ax(t) + u(t), u(t) ∈ U gives:

x(t) = etAx0 +

∫ t

0

e(t−y)Au(y)dy

= etAx0 +

∫ t

0

e(t−y)Avdy

= etAx0 +A−1(eAt − I)(v)



When x(0) ∈ X0, we apply minkowski sum to get:

X (t) = etAX0 ⊕A−1(eAt − I)(v)

Substituting t = iTp:

X (i(Tp)) = S(ti) = eA(iTp).X0 ⊕A−1(eA(iTp) − I)(v)

ut

Let Φ1 = eA(iTp) and Φ2 = A−1(eA(iTp) − I), the support function of the
S(ti) is given by:

supS(ti)(`) = supX0
(ΦT1 `) + supv(Φ

T
2 `) (11)

The reachable states in each time interval Ii = [iTp, (i+1)Tp] starting from states
x ∈ S(ti) is defined as R(Si) and can be computed sequentially using Equation
6. Computation of R(Si) can also be in parallel over the template directions as
proposed in Section 3.1.

Proposition 4. An approximation of the reachable states in time horizon T can
be computed by the following relation:

Reach[0,T ](X0) ⊆
N−1⋃
i=0

R(Si) (12)

Proof. R(Si) is computed using Equation 6 with a discretization time step δ
with Si as the initial set. Since Si gives the exact set of states reachable at
time instant t = iTp, the correctness argument shown in [12] guarantees that
Reach[Ii](X0) ⊆ R(Si). Therefore, we have:

Reach[0,T ](X0) =

N−1⋃
i=0

Reach[Ii](X0) ⊆
N−1⋃
i=0

R(Si)

ut

In Section 5 we show that computing the reachable states using Proposition
4 gives in some cases more precise results compared to the sequential algorithm
in [11,12]. This is because the approximation error in the computation of Ω0 in
Equation 6 propagates in the sequential algorithm. In our algorithm, since we
compute exact reachable states at partition time points in the time horizon and
recompute Ωti0 using them, the propagation of the error may diminish.

4 Sampling Support Functions in GPU

It can be observed from Equations 8 and 9 that the support function of Ωi can
be computed from the support function of X0, V and W. The support function



of V,W can be, in turn, computed from the support function of U and B. There-
fore, to compute the support functions of Ω0, . . . , ΩN−1 along a direction `, it
suffices to compute the support function of X0, U and B along the directions
`, ΦTδ `, (Φ

T
δ )2`, . . . , (ΦTδ )N `. Unlike the support function algorithm in [12] which

computes the support functions iteratively using Equation 8, we propose to com-
pute the support functions in a lazy fashion which involves delaying evaluation
until all the directional arguments are computed. The support functions are then
evaluated in parallel in lines 7-11, as shown in Algorithm 3.

Algorithm 3 Lazy evaluation of support functions

1: procedure Eval-Support(Ω[0 . . . N − 1], X0, U , `)
2: D[0]← `; . Computing directional arguments
3: for i← 1, N do
4: D[i]← ΦTδ · D[i− 1]
5: end for

. Computing support functions in parallel
6: Spawn thread Ti to evaluate ith loop iteration;
7: for i← 0, N do
8: SupX0[i]← Ti.evalSup(X0, D[i])
9: SupU [i]← Ti.evalSup(U , D[i])

10: SupB[i]← Ti.evalSup(B, D[i])
11: end for
12: Wait for all threads to finish.

. Computing support Functions of Ωi
13: sum← 0
14: supΩ0(`)← max

(
SupX0[0], SupX0[1] + δ · SupU [0] + α · SupB[0]

)
15: for i← 1, N − 1 do
16: p← max

(
SupX0[i], SupX0[i+ 1] + δ · SupU [i] + α · SupB[i]

)
17: sum← sum+ δ · SupU [i− 1] + β · SupB[i− 1]
18: supΩi(`)← p+ sum
19: end for
20: end procedure

Observe that we need to run the same support function evaluation routine for
a convex set but on different directions in parallel. We build upon this observa-
tion and propose to compute the support functions in SIMT (Single Instruction
Multiple Threads) parallel architecture wherein multiple instances of a proce-
dure execute in parallel but on different data. The modern day GPU (Graphics
Processing Unit) architectures are SIMT in nature and we therefore propose to
offload the support function computations to the GPU. A brief introduction to
GPU architecture and CUDA programming model is given in Section 4.1.

4.1 CUDA Programming Model

We now briefly present the GPU hardware architecture and the programming
model used to implement our parallel algorithms. As illustrated in Fig. 1, the



GPU architecture consists of a scalable array of N multithreaded Streaming
Multiprocessors (SMs), made up of M Stream Processor (SP) cores. Each core
is equipped with a fully pipelined integer arithmetic logic unit (ALU) and a
floating point unit (FPU) that executes one integer or floating point instruction
per clock cycle. In our experiments we have used the NVIDIA GeForce GTX
670 having 7 SMs and 192 SPs for each SM, for a total of 1344 SPs.

The NVIDIA vendor provides also a special Application Programming Inter-
face (API) called Compute Unified Device Architecture (CUDA) that facilitates
the developing of efficient applications tuned for NVIDIA GPUs. CUDA ex-
tends the C and the FORTRAN languages with special keywords and language
primitives that are suitable to achieve a high-performance hardware-based multi-
threading. We have implemented our parallel algorithms using the C extension.
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Fig. 1. GPU Architecture

The CUDA programming model
consists in using thousands of
lightweight threads arranged into
one- to three-dimensional thread
blocks. A thread executes a func-
tion called the kernel that con-
tains the computations to be run
in parallel using a GPU device. A
CUDA program starts running in
the Central Processing Unit (CPU)
referred as the host. Whenever a
kernel is launched from the host
code, the execution continues then
in the GPU. The max number of
threads running a kernel is fixed at
the launching time (this limitation
has some exceptions in the mod-
ern GPU cards supporting dynamic
parallelism).

Each thread is assigned to a SP and each thread block is processed by a
SM. The thread execution model in CUDA is the Single Instruction Multiple
Threads (SIMT). SIMT differs from the classical Single Instruction Multiple
Data (SIMD) by the fact that the threads sharing the same instruction address
and running synchronously are organised within a thread block into groups of
32 threads called warps. In a warp, the divergence of the threads execution in
different branches due to if-then-else constructs, reduces considerably the level
of parallelism and indeed degrades the performance of the kernel execution.

Threads can access different types of memory and their judicious use is key
to performance. The most general is the off-chip global memory, to which all
threads can read and write. Also the host can read and write the global memory
and so this memory is usually used as a way of communication between the host
and the GPU device. The global memory has slow performances and it is very
important to access it in a coalesced way using a single memory transaction



of 32, 64, or 128 bytes. The two caches L1 and L2 shown in Fig. 1 mitigates
this bottleneck by storing copies of the data most frequently accessed in the
global memory. Significantly faster levels of memory are available within an SM,
including 32-64KB of on-chip registers partitioned among all threads. As such,
using a large number of registers within a CUDA kernel will limit the number
of threads that can run concurrently. Finally, local memory is invoked when a
thread runs out of available registers. In addition, each SM has a shared memory
region (16-48KB). This level of memory, which can be accessed nearly as quickly
as the registers, facilitates communication between threads and can be used as
a programmer-controllable memory cache.

Threads located in the same thread block can cooperate in several ways. They
can insert a synchronization point into the kernel, which requires all threads
in the block to reach that point before execution can continue. They can also
share data during execution. In contrast, threads located in different thread
blocks cannot synchronize each other and they essentially operate independently.
Although a small number of threads or blocks can be used to execute a kernel,
this arrangement would not fully exploit the computing potential of the GPU.

4.2 Computing Support Functions of Polytopes in GPU

As discussed in Section 2, when X0 and U are polytopes, their support function
evaluation is equivalent to solving a linear program (LP). The Simplex algorithm
[4,5] is a well known and efficient procedure to solve LPs in practice. There is
previous work on implementing the simplex algorithm on CUDA executing in
a CPU-GPU heterogeneous system. An efficient implementation of the revised
simplex method over a CPU-GPU system is shown in [21]. A multi-GPU imple-
mentation of the simplex procedure is reported in [14]. However, the reported
results shows speed-up compared to sequential CPU implementation only when
the size of LP is at least 500× 500 (500 variables, 500 constraints). The reason
why performance is poor for small size LPs is the CPU-GPU memory transfer
latency to copy the simplex tableau and therefore the time gain due to par-
allelization is predominant over the CPU-GPU memory transfer latency only
for large instances of LP. Since the benchmarks we know are of dimension much
smaller than 500, we did not go for a simplex-algorithm implementation in GPU.

4.3 Computing Support Functions of Hyperbox in GPU

When the initial set X0 and input set U are given as hyperboxes, which are spe-
cial cases of polytopes, their support function can be computed using Proposition
2 instead of solving an LP with simplex algorithm. This also avoids expensive
memory transfer of simplex tableau, a data structure used in the simplex al-
gorithm, from CPU to GPU. Building on this observation, we implemented a
CUDA procedure to compute the support function of a hyperbox. There are
challenges to have speed-up derived from GPU due to issues like warp diver-
gence, memory transfer latency and GPU occupancy. We map a CUDA block
to compute support function along a sampling direction. Since CUDA blocks



are scheduled to SMs, this ensures that all the GPU SMs are utilized when the
number of sampling directions are more than the SMs in the GPU. Our block
is one dimensional containing only 32 threads (warp size) since instructions in
GPU are scheduled per warp which is a collection of 32 threads. The number of
threads per block is kept to 1 warp-size since the task of computing the support
function of a Hyperbox is lightweight. The maximum number of support func-
tion evaluation tasks that can be performed in parallel is limited by the number
of directions that can be transferred to the GPU global memory. We attempt
maximum parallelism by offloading tasks in batches of maximum possible size.
The pseudocode of the GPU offloading routine is shown in Algorithm 4.

Algorithm 4 Offloading of Tasks in Batches to GPU

1: procedure GPU-Offload(H, D, numDirections, Res)
2: gpuMemsize← getGlobalMemsize();
3: sizePerDirection← D[0].memsize();
4: memsize← numDirections ∗ sizePerDirection
5: if memsize > gpuMemsize then
6: totalBatches← ceil(memsize/gpuMemsize);
7: batchSize← floor(gpuMemsize/sizePerDirection);
8: D′ ← malloc(sizePerDirection ∗ batchSize ∗ sizeof(double));
9: cur ← 0;

10: while cur ≤ totalBatches do
11: D′ ← copy D from batchSize ∗ cur to batchSize ∗ (cur + 1)− 1;
12: gpuKernel <<< batchSize, 32 >>> (H,D′, Res);
13: cur ← cur + 1;
14: end while
15: else
16: batchSize← numDirections;
17: gpuKernel <<< batchSize, 32 >>> (H,D, Res);
18: end if
19: end procedure

5 Experiments

The parallel algorithms are implemented as part of the tool XSpeed including
the CUDA implementation. To measure the performance of our parallel algo-
rithms, we experiment on two benchmarks and compare our performance with
the SpaceEx’s (LGG) scenario [8] and with an optimized implementation of the
support function algorithm in [12].

5.1 Five Dimensional System

We consider a five dimensional linear continuous system as a benchmark from
[10]. Since we require the inputs set U to be a point set for our parallel state-space



exploration algorithm, we consider U = (0.01,0.01,0.01,0.01,0.01). We consider
the initial set X0 as a hyperbox with sides 0.02 centered at (1,0,0,0,0). For the
matrix A, the reader may refer to [10].

Figure 2 illustrates the parallel exploration with slicing the time horizon. The
figure shows that a time horizon of 5 units is sliced into five intervals each of size
1 unit. Five threads compute the reachable sets in parallel starting from initial
sets S(t = 0),S(t = 1),S(t = 2),S(t = 3) and S(t = 4).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(a) Reachable states com-
puted by individual threads
in 0.5 time unit

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(b) Reachable states com-
puted by individual threads
in 0.75 time unit

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(c) Reachable states com-
puted by individual threads
in 1 time unit

Fig. 2. Illustrating Parallel State-Space Exploration in Sliced Time Horizon

5.2 Helicopter Controller

To measure the performance on a high dimensional system, we consider the
benchmark of helicopter controller from [8][20]. This benchmark models the con-
troller of a Westland Lynx military helicopter with 8 continuous variables. The
controller is a 20 variables LTI system and the control system has 28 variables
in total. We consider the initial set X0 to be a hyperbox and the input set U to
be the origin {0}.

Table 1 shows the performance speed-up in computing reachable states with
our parallel direction samplings compared to the sequential support-function
algorithm in a 4 core and 6 core machine with hyper-threading, namely Intel
Core i7-4770, 3.40GHz, 8GB RAM and Intel Xeon CPU E5-2420, 1.2Ghz, 46.847
GB RAM respectively. The results are an average of 10 runs for a time horizon
of 5 units and a time step of 1.7e− 3 units. A speed-up of almost 7× is observed
for the Helicopter model. The gain in CPU utilization shows how our parallel
implementation exploits the power of multicore processors effectively.

Figure 3 shows the speed-up obtained with the parallel state-space explo-
ration with octagonal directions and time step of 0.0048 on Intel Core i7-4770,
4 core, 8 threads, 3.40GHz, 8GB RAM processor. The results from the SpaceEx
tool are obtained by running the executable available at http://spaceex.imag.
fr/ on the same machine, with same parameters. We show that selecting the

http://spaceex.imag.fr/
http://spaceex.imag.fr/


right partition size is important to obtain optimal speed-up. Partitioning be-
yond a limit though give us high precision but degrades the performance as the
threading overhead outruns the performance gain due to parallelism. The thresh-
old depends on the number of cores in the underlying multi-core architecture.
Figure 4 shows the gain in precision with box directions and time step of 0.01 and
0.0048 respectively for the five dimensional and the Helicopter benchmark. The
gain in precision is because the time sliced algorithm computes exact reachable
states at time points in the time horizon and diminishes the propagation of ap-
proximation error resulting from the computation of Ω0 in the support-function
algorithm.

Fig. 3. Illustrating speed-up using parallel state-space exploration in time slices over
sequential algorithm and the SpaceEx LGG scenario.

Table 2 shows the performance speed-up of reachability analysis when sup-
port functions are sampled in parallel in GPU (Algorithms 3, 4) compared to
sequential support function algorithm using GLPK and SpaceEx LGG scenario.
The iters in the table refers to the discretization factor of the time horizon. The
experiments are performed in Intel Q9950, 2.84Ghz, 4 Core, no hyper-threading,
8GB RAM with GeForce GTX 670 GPU card. We observe a speed-up of 9× to
12× over sequential implementation. A maximum speed-up of 53× is observed
for the five dimensional and 38× for the Helicopter model respectively compared
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Fig. 4. Illustrating gain in precision with parallel state-space exploration over sequen-
tial algorithm.

Table 1. Speed-up and utilization gain with parallel support function samplings

Model Dirs 4 Core (8 Threads) 6 Core (12 Threads)
Time (in secs) CPU

Util
Gain
(%)

Speed-
up

Time (in secs) CPU
Util
Gain
(%)

Speed-
up

Seq Par Seq Par

5 Dim-
Model

box 0.203 0.087 47.22 2.33 0.336 0.101 71.88 3.32
Oct 0.937 0.337 68.75 2.78 1.532 0.401 74.46 3.82
500 9.045 3.095 76.65 2.92 14.037 3.243 81.15 4.33

Helicopter
Controller
(28 dim)

box 2.418 0.571 71.05 4.23 3.36 0.608 79.96 5.52
Oct 67.125 14.779 77.5 4.54 93.837 13.669 86.77 6.87
3000 130.01 28.148 77.9 4.62 178.913 26.015 87.77 6.88

to SpaceEx on different parameters to the support-function algorithm. Observe
that the performance of our algorithms improves with the increase in the num-
ber of cores in the machine and signifies that performance of XSpeed can scale
automatically with future multicore machines and GPUs with higher degree of
parallelism.

6 Conclusion

We presented a parallel implementation of the support-function algorithm and a
time-sliced parallel state-space exploration algorithm. A lazy strategy of evalu-
ating support functions to bring in parallelism is illustrated and implemented in
CUDA to offload the computation task in GPU. We show that the performance
of reachability algorithms for linear dynamical systems can be considerably im-



Table 2. Performance speed-up with samplings in GPU

Model Dirs Iters Time (in secs) Speed-up
Seq SpaceEx Par

(GPU)
vs Seq vs.

SpaceEx

Five Dim.
Model

Box 1000 0.133 0.345 0.018 7.27 18.82
Box 2000 0.287 0.686 0.028 10.01 23.93
Oct 1000 0.717 1.399 0.06 11.87 23.15
Oct 2000 1.462 2.8 0.119 12.30 23.55
500 1000 6.695 24.171 0.576 11.62 41.96
500 2000 13.329 39.58 1.114 11.96 35.52
1000 1000 13.128 59.996 1.121 11.71 53.52
1000 2000 26.022 94.204 2.219 11.72 42.44

Helicopter
Controller
(28 dim.)

Box 1000 1.4 4.399 0.172 8.14 25.56
Box 1500 2.077 7.263 0.249 8.33 29.11
Box 2000 2.769 8.685 0.327 8.45 26.50
Box 2500 3.444 11.014 0.405 8.50 27.18
Oct 1000 39.089 123.794 4.246 9.21 29.15
Oct 1500 57.632 248.769 6.321 9.12 39.35
2000 1000 50.367 187.825 5.396 9.33 34.80
3000 1000 75.086 311.652 8.054 9.32 38.69
3000 2000 149.313 608.214 16.092 9.28 37.80

proved using the modern multi-core processors. The use of GP-GPU has shown
a promising performance gain in many scientific applications and we show that
they can also substantially improve the performance of reachability analysis. The
parallel algorithms and the GP-GPU task offloading are implemented in the tool
XSpeed.
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